Advertisement

Reflection Methods for Inverse Problems with Applications to Protein Conformation Determination

  • Jonathan M. Borwein
  • Matthew K. Tam
Chapter
Part of the Forum for Interdisciplinary Mathematics book series (FFIM)

Abstract

The Douglas–Rachford reflection method is a general-purpose algorithm useful for solving the feasibility problem of finding a point in the intersection of finitely many sets. In this chapter, we demonstrate that applied to a specific problem, the method can benefit from heuristics specific to said problem which exploit its special structure. In particular, we focus on the problem of protein conformation determination formulated within the framework of matrix completion, as was considered in a recent paper of the present authors.

Keywords

Reflection methods Inverse problems Protein conformation 

Notes

Acknowledgements

The authors wish to thank Dr. Alister Page for introducing us to the bulk structure determination problem and for kindly sharing the PAN data set. The work of JMB is supported in part by the Australian Research Council. This work was performed during MKT’s candidature at the University of Newcastle where he was supported in part by an Australian Postgraduate Award.

References

  1. 1.
    Aragón Artacho, F., Borwein, J.: Global convergence of a non-convex Douglas-Rachford iteration. J. Glob. Optim. 57(3), 753–769 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aragón Artacho, F., Borwein, J., Tam, M.: Recent results on Douglas–Rachford methods for combinatorial optimization problems. J. Optim. Theory Appl. (in press, 2013)Google Scholar
  3. 3.
    Aragón Artacho, F., Borwein, J., Tam, M.: Douglas-Rachford feasibility methods for matrix completion problems. ANZIAM J. 55(4), 299–326 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bauschke, H., Bello Cruz, J., Nghia, T., Phan, H., Wang, X.: The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle. J. Approx. Theory 185, 63–79 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bauschke, H., Combettes, P.: Convex analysis and monotone operator theory in Hilbert space. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bauschke, H., Combettes, P., Luke, D.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127(2), 178–192 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bauschke, H., Noll, D., Phan, H.: Linear and strong convergence of algorithms involving averaged nonexpansive operators. J. Math. Anal. Appl. 421(1), 1–20 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)CrossRefGoogle Scholar
  9. 9.
    Bondi, A.: Van der Waals Volumes and Radii. J. Phys. Chem. 68(3), 441–51 (1964)CrossRefGoogle Scholar
  10. 10.
    Borwein, J., Lewis, A.: Convex analysis and nonlinear optimization. Springer (2006)Google Scholar
  11. 11.
    Borwein, J., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 93–109. Springer (2011)Google Scholar
  12. 12.
    Borwein, J., Tam, M.: The cyclic Douglas-Rachford method for inconsistent feasibility problems. J. Nonlinear Convex Anal. 16(4), 537–584 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Borwein, J., Tam, M.: A cyclic Douglas-Rachford iteration scheme. J. Optim. Theory Appl. 160(1), 1–29 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Borwein, J., Zhu, Q.: Techniques of Variational Analysis, CMS Books in Mathematics, vol. 20. Springer-Verlag, New York (2005, Paperback, 2010)Google Scholar
  15. 15.
    Berman, A., Shaked-Monderer, N.: Completely positive matrices. World Scientific, Singapore (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Cegielski, A.: Iterative methods for fixed point problems in Hilbert space. Lecture Notes in Mathematics, vol. 2057. Springer, London (2012)Google Scholar
  17. 17.
    Dattorro, J.: Convex optimization & Euclidean distance geometry. Meboo Publishing USA (2005)Google Scholar
  18. 18.
    Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc. Natl. Acad. Sci. 104(2), 418–423 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gravel, S., Elser, V.: Divide and concur: A general approach to constraint satisfaction. Phys. Rev. E 78(3), 036,706 (2008)Google Scholar
  20. 20.
    Hayden, T., Wells, J.: Approximation by matrices positive semidefinite on a subspace. Linear Algebra Appl. 109, 115–130 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hesse, R., Luke, D.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Seo, J., Kim, J.-K., Ryu, J., Lavor, C., Mucherino, A., Kim, D.-S.: BetaMDGP: Protein structure determination algorithm based on the Beta-complex. Trans. Comput. Sc. 8360, 130–155 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institut für Numerische und Angewandte MathematikUniversität GöttingenGöttingenGermany

Personalised recommendations