Skip to main content

Fungal Differentiation: A Model Phenomenon to Screen Antifungal Drugs

  • Chapter
  • First Online:
Developments in Fungal Biology and Applied Mycology

Abstract

Pathogenic fungi change the morphology to a suitable vegetative form such as unicellular yeast or filamentous mycelium for the survival and proliferation in the host as well as to defeat cellular and physiological defences of the host. The microenvironment of the pathogen triggers different biochemical processes finally leading to differentiation. These biochemical processes, which correlate with morphological change from saprophytic/less virulent to pathogenic form, can be targeted for the development of novel antifungal agents. The present chapter deals with the role of differentiation in fungal pathogenesis and discusses different biochemical events as target for the antifungal strategies.

If we can solve the same problem equally well with yeasts or with human cells, common sense tells us to stick with the simpler and less expensive system.

— James Watson

Molecular Biology of the Gene Vol. I, 1987

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anraku Y, Ohya Y, Lida H (1991) Cell cycle control by calcium ad calmodulin in Saccharomyces cerevisiae. Biochem Biophys Acta 1093:169–173

    CAS  PubMed  Google Scholar 

  • Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69

    CAS  PubMed  Google Scholar 

  • Barros MB, de Almeida Paes R, Schuback AO (2011). Sporothrix schenckii and sporotrichosis. Clin Microb Rev 24:633–654

    Google Scholar 

  • Bates S, Hughes HB, Munro CA, Thomas WP, MacCallum DM, Bertram G, Atrih A, Ferguson MA, Brown AJ, Odds FC, Gow NA (2006) Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J Biol Chem 281:90–98

    CAS  PubMed  Google Scholar 

  • Bavikar SN, Salunke DB, Hazra BG, Pore VS, Dodd RH, Thierry J, Shirazi F, Deshpande MV, Kadreppa S, Chattopadhyay S (2008) Synthesis of chimeric tetrapeptide-linked cholic acid derivatives: impending synergistic agents. Bioorg Med Chem Lett 18:5512–5517

    CAS  PubMed  Google Scholar 

  • Bradsher RW, Ulmer WC, Marmer DJ, Townsend JW, Jacobs RF (1985) Intracellular growth and phagocytosis of Blastomyces dermatitidis by monocyte-derived macrophages from previously infected and normal subjects. J Infect Dis 151:57–64

    CAS  PubMed  Google Scholar 

  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:1–9

    Google Scholar 

  • Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT (1996) Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY 294002. Eur Mol Biol Org 15:5256–5267

    CAS  Google Scholar 

  • Calvo-Mendez C, Martinez-Pacheco M, Ruiz-Herrera J (1987) Regulation of ornithine decarboxylase activity in Mucor bacilliformis and Mucor rouxii. Exp Mycol 11:270–277

    CAS  Google Scholar 

  • Casadevall A, Pirofski LA (2001) Host-pathogen interactions: the attributes of virulence. J Infect Dis 184:337–344

    CAS  PubMed  Google Scholar 

  • Caughey WS, Smiley JD, Hellerman L (1956) L-Glutamic acid dehydrogenase: Structural requirements for substrate competition: effect of thyroxine. J Biol Chem 224:591–607

    Google Scholar 

  • Chaudhary PM, Chavan SR, Shirazi F, Razdan M, Nimkar P, Maybhate SP, Likhite AP, Gonnade R, Hazara BG, Deshpande MV, Deshpande SR (2009) Exploration of click reaction for the synthesis of modified nucleosides as chitin synthase inhibitors. Bioorg Med Chem 17:2433–2440

    CAS  PubMed  Google Scholar 

  • Chaudhary PM, Tupe SG, Deshpande MV (2013) Chitin synthase inhibitors as antifungal agents. Mini-Rev Med Chem 13:222–236

    CAS  PubMed  Google Scholar 

  • Chitnis MV, Deshpande MV (2002) Isolation and regeneration of protoplasts from the yeast and mycelial form of the dimorphic zygomycete Benjaminiella poitrasii: role of chitin metabolism for morphogenesis during regeneration. Microbiol Res 157:29–37

    CAS  PubMed  Google Scholar 

  • Chitnis M, Munro CA, Brown AJP, Gooday GW, Gow NAR, Deshpande MV (2002) The zygomycetous fungus, Benjaminiella poitrasii contains a large family of differentially regulated chitin synthase genes. Fungal Genet Biol 36:215–223

    CAS  PubMed  Google Scholar 

  • Choudhury R, Punekar NS (2007) Competitive inhibition of glutamate dehydrogenase reaction. Fed Eur Biochem Soc Lett 581:2733–2736

    CAS  Google Scholar 

  • Coelho KIR, Defaveri J, Rezkallah-Iwasso MT, Peracoli MTS (1994) Experimental paracoccidioidomycosis. In: Franco MF, Lacaz CS, Restrepo-Moreno A, Del Negro G (eds) Paracoccidioidomycosis. CRC Press, Boco Raton, pp 87–107

    Google Scholar 

  • Cunliffe D, Leason M, Parkin D, Lea P (1983) The inhibition of glutamate dehydrogenase by derivatives of isophthalic acid. Phytochemistry 22:1357–1360

    CAS  Google Scholar 

  • da Silva DA, Patterson MJ, Smith DA, MacCallum DM, Erwig LP, Morgan BA, Quinn J (2010) Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol Cell Biol 30:4550–4563

    Google Scholar 

  • Denning DW, Bromley MJ (2015) How to bolster the antifungal pipeline. Science 347:1414–1416

    CAS  PubMed  Google Scholar 

  • Deshpande MV (1996) The effect of morphological changes in fungal pathogenesis. Indian J Med Microbiol 14:1–9

    Google Scholar 

  • Deshpande MV (1998) Biochemical basis of fungal differentiation. In: Verma A (ed) Microbes: for health, wealth and sustainable environment. Malhotra Publishing House, India, pp 241–252

    Google Scholar 

  • Deshpande MV, O’Donnell R, Gooday GW (1997) Regulation of chitin synthase activity in the dimorphic fungus Benjaminiella poitrasii by external osmotic pressure. FEMS Microbiol Lett 152:327–332

    CAS  PubMed  Google Scholar 

  • Díaz-Jiménez DF, Pérez-García LA, Martínez-Álvarez JA, Mora-Montes HM (2012) Role of the fungal cell wall in pathogenesis and antifungal resistance. Curr Fungal Infect Rep 6:275–282

    Google Scholar 

  • Doiphode N (2007) Dimorphism in Benjaminiella poitrasii: role of NAD-dependent glutamate dehydrogenase in yeast-hypha transition. A Ph.D. thesis submitted to University of Pune, Pune, India

    Google Scholar 

  • Doiphode N, Joshi C, Ghormade V, Deshpande MV (2009a) The biotechnological applications of dimorphic yeasts. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer Science + Business Media B.V., pp 635–650

    Google Scholar 

  • Doiphode N, Rajamohanan PR, Ghormade V, Deshpande MV (2009b) Chitosan production using a dimorphic zygomycetous fungus Benjaminiella poitrasii: role of chitin deacetylase. Asian Chitin J 5:19–26

    Google Scholar 

  • Domer JE (1985) Blastomyces dermatitidis. In: Szaniszlo PJ (ed) Fungal dimorphism. Plenum Press, New York, pp 51–67

    Google Scholar 

  • Dorocka-Bobkowska B, Duzgunes N, Konopka K (2009) Ambisome and amphoterecin B inhibit initial adherence of Candida albicans to human epithelial cells lines, but do not cause yeast detachment. Med Sci Monit 15:262–269

    Google Scholar 

  • Eissenberg LG, Schlesinger PH, Goldman WE (1988) Phagosome-lysosome fusion in P388D1 macrophages infected with Histoplasma capsulatum. J Leukoc Biol 43:483–491

    CAS  PubMed  Google Scholar 

  • Eschenauer G, DePestel DD, Carver PL (2007) Comparison of echinocandin antifungals. Ther Clin Risk Manag 3:71–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathogen 8:e1002585

    CAS  Google Scholar 

  • Feretzaki M, Hardison SE, Wormley FL Jr, Heitman J (2014) Cryptococcus neoformans hyperfilamentous strain is hypervirulent in a murine model of cryptococcal meningoencephalitis. PLoS ONE 9:e104432. https://doi.org/10.1371/journal.pone.0104432

    Article  PubMed  PubMed Central  Google Scholar 

  • Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, Hube B (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415

    CAS  PubMed  Google Scholar 

  • Fukazawa Y, Kagaya K (1997) Molecular bases of adhesion of Candida albicans. J Med Vet Mycol 35:87–99

    CAS  PubMed  Google Scholar 

  • Garcia JR, Hiatt WR, Peters J, Sypherd PS (1980) S-Adenosylmethionine levels and protein methylation during morphogenesis of Mucor racemosus. J Bacteriol 142:196–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garrison RG, Arnold WN (1983) Cytochemical localization of acid phosphatases in the dimorphic fungus Sporothrix schenckii. Curr Microbiol 9:253–258

    CAS  Google Scholar 

  • Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13:122–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghormade V (2000) Dimorphism in Benjaminiella poitrasii: a model system to study the morphogenesis and for screening antifungal drugs. A Ph.D. thesis submitted to University of Pune, Pune, India

    Google Scholar 

  • Ghormade V, Deshpande MV (2000) Fungal spore germination into yeast or mycelium: possible implications of dimorphism in evolution and human pathogenesis. Naturwissenschaften 87:236–240

    CAS  PubMed  Google Scholar 

  • Ghormade VS, Lachke SA, Deshpande MV (2000) Dimorphism in Benjaminiella poitrasii: Involvement of intracellular endo-chitinase and N-acetylglucosaminidase activities in the yeast-mycelium transition. Folia Microbiol 45:231–238

    CAS  Google Scholar 

  • Ghormade V, Joshi C, Deshpande MV (2005) Regulation of polyamines: A possible model for signal transduction pathway leading to dimorphism in Benjaminiella poitrasii. J Mycol Plant Pathol 35:442–450

    CAS  Google Scholar 

  • Ghormade V, Pathan E, Deshpande MV (2012) Yeast-hypha dimorphism in zygomycetous fungi. In: Ruiz-Herrera J (ed) Dimorphic fungi: their importance as models for differentiation and fungal pathogenesis. Bentham Science Publishers, USA, pp 118–139

    Google Scholar 

  • Goldani LZ, Picard M, Sugar AM (1994) Synthesis of heat-shock proteins in mycelia and yeast forms of Paracoccidioides brasiliensis. J Med Microbiol 40:124–128

    CAS  PubMed  Google Scholar 

  • Gow NAR, van de Veerdonk FL, Brown AJP, Netea MG (2012) Candida albicans morphogenesis and host defense: discriminating invasion from colonization. Nat Rev Microbiol 10:112–122

    CAS  Google Scholar 

  • Hahn RC, Macedo AM, Fontes CJ, Batista RD, Santos NL, Hamdan JS (2003) Randomly amplified polymorphic DNA as a valuable tool for epidemiological studies of Paracoccidioides brasiliensis. J Clin Microbiol 7:2849–2854

    Google Scholar 

  • Hogan LH, Klein BS (1994) Altered expression of surface alpha-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence. Infect Immun 62:3543–3546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes AR, Cannon RD, Shepherd MG (1991) Effect of calcium ion uptake on Candida albicans morphology. Fed Eur Microbiol Soc Microbiol Lett 61:187–193

    CAS  Google Scholar 

  • Hostetter MK (1994) Adhesins and ligands involved in the interaction of Candida spp. with epithelial and endothelial surfaces. Clin Microbiol Rev 7:29–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard DH (1965) Intracellular growth of Histoplasma capsulatum. J Bacteriol 89:518–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M, Nozu R, Kumramochi T, Eguchi N, Suzuki S, Hioki K, Itoh T, Ikeda F (2000) Prophylactic effect of FK463, novel antifungal lipopeptide, against Pneumocystis carinii infection in mice. Antimicrob Agents Chemother 44:2259–2262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B (2012) Candida albicans dimorphism as a therapeutic target. Expert Rev Anti-infective Ther 10:85–93

    Google Scholar 

  • Joshi CV, Ghormade V, Kunde P, Kulkarni P, Mamgain H, Bhat S, Paknikar KM, Deshpande MV (2010) Flocculation of dimorphic yeast Benjaminiella poitrasii is altered by modulation of NAD-glutamate dehydrogenase. Biores Technol 101:1393–1395

    CAS  Google Scholar 

  • Joshi CV, Pathan EK, Punekar NS, Tupe SG, Kapadnis BP, Deshpande MV (2013) A biochemical correlate of dimorphism in a zygomycete Benjaminiella poitrasii: characterization of purified NAD-dependent glutamate dehydrogenase, a target for antifungal agents. Antonie Van Leeuwenhoek 104:25–36

    CAS  PubMed  Google Scholar 

  • Kanafani ZA, Perfect JR (2008) Resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis 46:120–128

    PubMed  Google Scholar 

  • Kanbe T, Cutler JE (1998) Minimum chemical requirements for adhesin activity of the acid stable part of Candida albicans cell wall phosphomannoprotein complex. Infect Immun 66:5812–5818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karkowska-Kuleta J, Rapala-Kozik M, Kozik A (2009) Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Polonica 56:211–224

    CAS  Google Scholar 

  • Kemna ME, Neri RC, Ali R, Salkin I (1994) Cokeromyces recurvatus, a mucoraceous zygomycete rarely isolated in clinical laboratories. J Clin Microbiol 32:843–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kester SA, Garrett DC (1995) Morphometry and stereology of the conversion of thin walled yeasts to phase yeast cells of Wangiella dermatitidis. Mycologia 87:153–160

    Google Scholar 

  • Khale A (1990) Dimorphism in fungi. A Ph.D. thesis submitted to University of Pune, Pune, India

    Google Scholar 

  • Khale A, Deshpande MV (1992) Dimorphism in Benjaminiella poitrasii: cell wall chemistry of parent and two stable yeast mutants. Antonie Van Leeuwenhoek 62:299–307

    CAS  PubMed  Google Scholar 

  • Khale A, Srinivasan MC, Deshmukh SS, Deshpande MV (1990) Dimorphism of Benjaminiella poitrasii: isolation and biochemical studies of morphological mutants. Antonie Van Leeuwenhoek 57:37–41

    CAS  PubMed  Google Scholar 

  • Khale A, Srinivasan MC, Deshpande MV (1992) Significance of NADP-/NAD- glutamate dehydrogenase ratio in the dimorphic behavior of Benjaminiella poitrasii. J Bacteriol 174:3723–3728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khale-Kumar A, Deshpande MV (1993) Possible involvement of cyclic adenosine 3′- 5′-monophosphate in the regulation of NADP-/NAD-glutamate dehydrogenase ratio and yeast-mycelium transition of Benjaminiella poitrasii. J Bacteriol 175:6052–6055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein BS, Chang WL (2002) Pathogenic properties of Blastomyces dermatitidis. In: Calderone RA, Cihlar RL (eds) Fungal pathogenesis: principles and clinical application. CRC Press, New York, pp 183–204

    Google Scholar 

  • Klein BS, Tebbets B (2007) Dimorphism and virulence in fungi. Curr Opin Microbiol 10:314–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kneifel H, Konig WA, Wolff G, Zahner H (1974) Metabolic products of microorganisms 123 thrautomycin, a new antifungal nucleoside antibiotic from Streptomyces exfoliates. J Antibiot 27:20–27

    CAS  PubMed  Google Scholar 

  • Kumar BV, Maresca B, Sacco M, Goewert R, Kobayashi GS, Medoff G (1983) Purification and properties of yeast specific cysteine oxidase from Histoplasma capsulatum. Biochem J 22:762–768

    CAS  Google Scholar 

  • Kwon-Chung KJ (1971) Sexual stage of Histoplasma capsulatum. Science 175:326

    Google Scholar 

  • Kwon-Chung KJ, Rhodes JC (1986) Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun 51:218–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon-Chung KJ, Lehman D, Good C, Magee PT (1985) Genetic evidence for role of extracellular proteinase in virulence of Candida albicans. Infect Immun 49:570–575

    Google Scholar 

  • Latge JP, Calderone R (2002) Host-microbe interactions: fungi invasive human fungal opportunistic infections. Curr Opin Microbiol 5:355–358

    PubMed  Google Scholar 

  • Lee SC, Phadke S, Sun S, Heitman J (2012) Pseudohyphal growth of Cryptococcus neoformans is a reversible dimorphic transition in response to ammonium that requires Amt1 and Amt2 ammonium permeases. Eukaryot Cell 11:1391–1398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Li A, Calo S, Inoue M, Tonthat NK, Bain JM, Louw J, Shinohara ML, Erwig LP, Schumachr MA, Ko DC, Heitman J (2015) Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host–pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides. Mol Microbiol 97:844–865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leng P, Sudbery PE, Brown AJ (2000) Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans. Mol Microbiol 35:1264–1275

    CAS  PubMed  Google Scholar 

  • Lima OC, Figueiredo CC, Previato JO, Mendonca-Previato L, Morandi V, Bezerra LML (2001) Involvement of fungal cell wall components in adhesion of Sporothrix schenckii to human fibronectin. Infect Immun 69:6874–6880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    CAS  PubMed  Google Scholar 

  • Maresca B, Kobayashi GS (1989) Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi. Microbiol Mol Biol Rev 53:186–209

    CAS  Google Scholar 

  • Maresca B, Kobayashi G (1993) Changes in membrane fluidity modulate heat shock gene expression and produced attenuated strains in the dimorphic fungus Histoplasma capsulatum. Arch Med Res 24:247–249

    CAS  PubMed  Google Scholar 

  • Maresca B, Kobayashi GS (2000) Dimorphism in Histoplasma capsulatum and Blastomyces dermatitidis. Contributions Microbiol 5:201–216

    CAS  Google Scholar 

  • Maresca B, Carratu L, Kobayashi GS (1994) Morphological transition in the human fungal pathogen Histoplasma capsulatum. Trends Microbiol 2:110–114

    CAS  PubMed  Google Scholar 

  • Martinez LR, Casadevall A (2006) Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 50:1021–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masih DT, Sotomayor CE, Cervi LA, Riera CM, Rubinstein HR (1991) Inhibition of I-A expression in rat peritoneal macrophages due to T-suppressor cells induced by Cryptococcus neoformans. J Med Vet Mycol 29:125–128

    CAS  PubMed  Google Scholar 

  • McCusker JH, Clemons KV, Stevens DA, Davis RW (1994) Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136:1261–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes-Giannini MJ, Monteiro da Silva JL, de Fatima da Silva J, Donofrio FC, Miranda ET, Andreotti PF, Soares CP (2008) Interactions of Paracoccidiodes brasiliensis with host cells: recent advances. Mycopathologia 165:237–248

    Google Scholar 

  • Montenegro MR (1995) Host parasitic relationship in paracoccidioidomycosis. Jpn J Med Mycol 36:209–213

    Google Scholar 

  • Morace G, Borghi E (2012) Invasive mold infections: virulence and pathogenesis of mucorales. Int J Microbiol 349278

    Google Scholar 

  • Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D, Schnell N, Talibi D, Marechal D, Tekaia F, d’Enfert C, Gaillardin C, Odds FC, Brown AJ (2001) NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy JW, Cozad GC (1972) Immunological unresponsiveness induced by cryptococcal capsular polysaccharide assayed by the hemolytic plaque technique. Infect Immun 5:896–901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumar G, Nickerson KW (1984) Ca(II)-calmodulin regulation of fungal dimorphism in Ceratocystis ulmi. J Bacteriol 159:390–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumar G, Nickerson AW, Nickerson KW (1987) Calmodulin levels in yeasts and filamentous fungi. Fed Eur Microbiol Soc Microbiol Lett 41:253–255

    CAS  Google Scholar 

  • Nadal M, Garcia-Pedrajas MD, Gold SE (2008) Dimorphism in fungal plant pathogens. FEMS Microbiol Lett 284:127–134

    CAS  PubMed  Google Scholar 

  • Naglik JR, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6:915–926

    CAS  PubMed  Google Scholar 

  • Nemecek JC, Wuthrich M, Klein BS (2006) Global control of dimorphism and virulence in fungi. Science 312:583–588

    CAS  PubMed  Google Scholar 

  • Noor S, Punekar NS (2005) Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface. Microbiology 151:1409–1419

    CAS  PubMed  Google Scholar 

  • Ocampo J, McCormack B, Navarro E, Moreno S, Garre V, Rossi S (2012) Protein kinase A regulatory subunit isoforms regulate growth and differentiation in Mucor circinelloides: essential role of PKAR4. Eukaryot Cell 11:989–1002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa H, Tsuboi R (1997) Fungal enzymes related to the pathogenesis of mycoses. In: Jacob PH, Nall L (eds) Fungal disease. Marcel Dekker Inc., New York, pp 191–207

    Google Scholar 

  • Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chretien F, Heitman J, Dromer F, Nielsen K (2010) Cryptococcal cell morphology affects host cell interactions and pathogenecity. PLoS Pathog 6:1–15

    Google Scholar 

  • Orlowski M (1991) Mucor dimorphism. Microbiol Rev 55(2):234–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pacetti SA, Gelone SP (2003) Caspofungin acetate for treatment of invasive fungal infections. Ann Pharmacother 37:90–98

    CAS  PubMed  Google Scholar 

  • Paranjape V, Gupta Roy B, Datta A (1990) Involvement of calcium, calmodulin and protein phosphorylation in morphogenesis of Candida albicans. J Gen Microbiol 136:2149–2154

    CAS  PubMed  Google Scholar 

  • Perfect JR (2006) Cryptococcus neoformans: a sugar-coated killer. In: Heitman J, Filler SG, Edwards JE Jr, Mitchell AP (eds) Molecular principles of fungal pathogenesis. ASM Press, Washington DC, pp 281–303

    Google Scholar 

  • Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE Jr, Fille SG (2007) Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5:0544–0557

    Google Scholar 

  • Pillonel C (2005) Evaluation of phenylaminopyrimidines as antifungal protein kinase inhibitors. Pest Manag Sci 61:1069–1076

    CAS  PubMed  Google Scholar 

  • Plonka PL, Grabacka M (2006) Melanin synthesis in microorganisms-biotechnological and medical aspects. Acta Biochim Pol 53:429–443

    CAS  PubMed  Google Scholar 

  • Porta A, Calabrese E, Granata I, Maresca B (2012) Histoplasma capsulatum and its virulence determinants. In: Ruiz-Herrera J (ed) Dimorphic fungi: their importance as models for differentiation and fungal pathogenesis. Bentham Science Publishers, USA, pp 61–77

    Google Scholar 

  • Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E (2009) Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell 8:1750–1758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Resnick S, Pappagianis D, Mckerrow JH (1987) Proteinase production by parasitic cycle of the pathogenic fungus Coccidioides immitis. Infect Immun 55:2807–2815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Restrepo A (2000) Morphological aspects of Paracoccidioides brasiliensis in lymph nodes: implications for the prolonged latency of paracoccidioidomycosis? Med Mycol 38:317–322

    CAS  PubMed  Google Scholar 

  • Rhodes JC (1988) Virulence factors in fungal pathogenesis. Microbiol Sci 5:252–254

    CAS  PubMed  Google Scholar 

  • Rhodes JC, Polacheck I, Kwon-Chung KJ (1982) Phenoloxidase activity and virulence in isogenic strains of Cryptococcus neoformans. Infect Immun 36:1175–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson CM, Williamson DS, Parratt MJ, Borgognoni J, Cansfield AD, Dokurno P, Francis GL, Howes R, Moore JD, Murray JB, Robertson A, Surgenor AE, Torrance CJ (2006) Triazolo[1,5- a] pyrimidines as novel CDK2 inhibitors: protein structure guided design and SAR. Bioorg Med Chem Lett 16:1353–1357

    CAS  PubMed  Google Scholar 

  • Rivera-Rodriguez N, Rodriguez-del Valle N (1992) Effects of calcium ions on the germination of Sporothrix schenckii conidia. J Med Vet Mycol 30:185–195

    CAS  PubMed  Google Scholar 

  • Robson GD, Weibe MG, Trinci APJ (1991) Exogenous cAMP and cGMP modulate branching in Fusarium graminearum. J Gen Microbiol 137:963–969

    CAS  PubMed  Google Scholar 

  • Rogers KS (1971) Molecular interaction of competitive inhibitors with bovine liver glutamate dehydrogenase. J Biol Chem 246:2004–2009

    CAS  PubMed  Google Scholar 

  • Rogers KS, Boots MR, Boots SG (1972) Molecular interaction of six aromatic competitive inhibitors with bovine liver glutamate dehydrogenase. Biochem Biophys Acta 258:343–350

    CAS  PubMed  Google Scholar 

  • Rubinstein HR, Sotomayor CE, Cervi LA, Riera CM, Masih DT (1989) Immunosuppression in experimental cryptococcosis in rats: modification of macrophage functions by T suppressor cells. Mycopathologia 108:11–19

    CAS  PubMed  Google Scholar 

  • Ruiz-Herrera J (1994) Polyamines. DNA methylation and fungal differentiation, Critical Reviews in Microbiology 20:143–150

    CAS  Google Scholar 

  • Ruiz-Herrera J, Martinez-Espinoza AD (1998) The fungus Ustilago maydis, from the Aztec cuisine to the research laboratory. Int J Microbiol 1:149–158

    CAS  Google Scholar 

  • Ruiz-Herrera J, Ruiz A, Lopez-Romero E (1983) Isolation and biochemical analysis of Mucor bacilliformis monomorphic mutants. J Bacteriol 156:264–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Herrera J, Elorza MV, Valentin E, Sentandreu R (2006) Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6:14–29

    CAS  PubMed  Google Scholar 

  • Salunke DB, Hazra BG, Pore VS, Bhat MK, Nahar PB, Deshpande MV (2004) New steroidal dimers with antifungal and antiproliferative activity. J Med Chem 47:1591–1594

    CAS  PubMed  Google Scholar 

  • San-Blas G, San-Blas F (1984) Molecular aspects of fungal dimorphism. Crit Rev Microbiol 11:101–127

    CAS  PubMed  Google Scholar 

  • San-Blas F, San-Blas G (1985) Paracoccidioides brasiliensis. In: Szaniszlo PJ (ed) Fungal dimorphism. Plenum Press, New York, pp 93–120

    Google Scholar 

  • Saville SP, Lazzell AL, Chaturvedi AK, Monteagudo C, Lopez-Ribot JL (2008) Use of a genetically engineered strain to evaluate the pathogenic potential of yeast cell and filamentous forms during Candida albicans systemic infection in immunodeficient mice. Infect Immun 76:97–102

    CAS  PubMed  Google Scholar 

  • Schaller M, Borelli C, Korting HC, Hube B (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48:365–377

    CAS  PubMed  Google Scholar 

  • Shapiro RS, Robbins N, Cowen LE (2007) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75:213–267

    Google Scholar 

  • Shareck J, Belhumeur P (2011) Modulation of morphogenesis in Candida albicans by various small molecules. Eukaryot Cell 10:1004–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng C, Che X, Wang W, Wang S, Cao Y, Yao J, Miao Z, Zhang W (2011) Structure based design, synthesis, and antifungal activity of new triazole derivatives. Chem Biol Drug Des 78:309–313

    CAS  PubMed  Google Scholar 

  • Stevens L, Duncan D, Robertson P (1989) Purification and characterization of NAD-glutamate dehydrogenase from Aspergillus nidulans. Fed Eur Microbiol Soc Microbiol Lett 48:173–178

    CAS  Google Scholar 

  • Sundstron JB, Cherniack R (1993) T-cell-dependent and T-cell-independent mechanisms of tolerance to glucuronoxylomannan of Cryptococcus neoformans serotype A. Infect Immun 61:1340–1345

    Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson DS, Carlisle PL, Kadosh D (2011) Coevolution of morphology and virulence in Candida Species. Eukaryot Cell 10:1173–1182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thykaer J, Rueksomtawin K, Noorman H, Nielsen J (2009) Disruption of the NADPH-dependent glutamate dehydrogenase affects the morphology of two industrial strains of Penicillium chrysogenum. J Biotechnol 139:280–282

    CAS  PubMed  Google Scholar 

  • Tsuboi R, Sanada T, Takamori K, Ogawa H (1987) Isolation and properties of extracellular proteinases from Sporothrix schenckii. J Bacteriol 169:4104–4109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuboi R, Sanada T, Ogawa H (1988) Influence of culture medium pH and proteinase inhibitors on extracellular proteinase activity and cell growth of Sporothrix schenckii. J Clin Microbiol 26:1431–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tupe SG, Kulkarni RR, Shirazi F, Sant DG, Joshi SP, Deshpande MV (2015) Possible mechanism of antifungal phenazine-1-carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans. J Appl Microbiol 118:39–48

    CAS  PubMed  Google Scholar 

  • Vanittanakom N, Cooper CR Jr, Fisher MC, Sirisanthana T (2006) Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin Microbiol Rev 19:95–110

    Google Scholar 

  • Vatmurge NS, Hazra BG, Pore VS, Shirazi F, Chavan PS, Deshpande MV (2008a) Synthesis and antimicrobial activity of b-lactam-bile acid conjugates linked via triazole. Bioorg Med Chem Lett 18:2043–2047

    CAS  PubMed  Google Scholar 

  • Vatmurge NS, Hazra BG, Pore VS, Shirazi F, Chavan PS, Deshpande MV, Kadreppa S, Chattopadhyay S (2008b) Synthesis and biological evaluation of bile acid dimers linked with 1,2,3-triazole and bis-b-lactam. Org Biomol Chem 6:3823–3830

    CAS  PubMed  Google Scholar 

  • Vecchiarelli A, Pietrella D, Dottorini M, Todisco T, Bistoni F (1994) Encapsulation of Cryptococcus neoformans regulates fungicidal activity and the antigen presentation process in human alveolar macrophages. Clin Exp Immunol 98:217–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchiarelli A, Retini C, Pietrella D, Monari C, Retini C, Beccari T, Kozel TR (1995) Down regulation by cryptococcal polysaccharide of tumor necrosis factor alpha and interleukin-1ß secretion from human monocytes. Infect Immun 63:2919–2923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veronese FM, Nyc JF, Degani Y, Brown DM, Smith EL (1974) Nicotinamide adenine dinucleotide—specific glutamate dehydrogenase of Neurospora Purification and molecular properties. J Biol Chem 249:7922–7928

    CAS  PubMed  Google Scholar 

  • White TC, Agabian N (1995) Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol 177:5215–5221

    CAS  PubMed  PubMed Central  Google Scholar 

  • White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaas AK, Alexander BD (2005) Echinocandins: role in antifungal therapy. Expert Opin Pharmacother 6:1657–1668

    CAS  PubMed  Google Scholar 

  • Zaragoza O, Nielsen K (2013) Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr Opin Microbiol 16:409–413

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The antifungal programme at CSIR-NCL, Pune, is funded by Department of Biotechnology, India (grants BT/PR15003/BRB/10/893/2010 and BT/PR7442/MED/29/680/2012). EKP thanks University Grants Commission, India, and SGT acknowledges Council of Scientific and Industrial Research, India, for research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Deshpande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathan, E.K., Tupe, S.G., Deshpande, M.V. (2017). Fungal Differentiation: A Model Phenomenon to Screen Antifungal Drugs. In: Satyanarayana, T., Deshmukh, S., Johri, B. (eds) Developments in Fungal Biology and Applied Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4768-8_12

Download citation

Publish with us

Policies and ethics