Passive Techniques of Digital Image Forgery Detection: Developments and Challenges
- 5 Citations
- 16 Mentions
- 1.2k Downloads
Abstract
Photographs and images play an important role in our lives but, in this technology era, equipped with powerful, low cost, and easy to use photo editing tools, people often forge photographs. This practice has posed a question mark on the trustworthiness of images necessitating separation of original images from the tampered lot. Because carefully edited and forged images are very hard to be distinguished from their genuine copies therefore, forgery detection and separation of the forged images from the innocent and genuine ones has become a challenging issue for image analysts. Image forgery detection procedures are generally classified into two broad categories; the active and the passive detection techniques. This paper presents a state of the art review of different passive forgery detection techniques those are proposed by different authors over time.
Keywords
Copy–move forgery Cloning Splicing WatermarkReferences
- 1.Haouzia, A., Noumeir, R.: Methods for image authentication: a survey. Multimedia Tools Appl. 39(1), 1–46 (2008)CrossRefGoogle Scholar
- 2.Mishra, M., Adhikary, M.C.: Digital image tamper detection techniques—a comprehensive study. Int. J. Comput. Sci. Bus. Inform. 2(1), 1–12 (2013)Google Scholar
- 3.Kaur, H., Kaur, K.: A brief survey of different techniques for detecting copy–move forgery. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5(4), 875–882 (2015)Google Scholar
- 4.Shah, H., Shinde, P., Kukreja J.: Retouching detection and steganalysis. Int. J. Eng. Innov. Res. 2(6), 487–490 (2013)Google Scholar
- 5.Gupta, A., Saxena, N., Vasistha, S.K.: Detecting copy-move forgery using DCT. Int. J. Sci. Res. Publ. 3(5), 1–4 (2013)Google Scholar
- 6.Mishra, M., Adhikary, M.C.: Detection of clones in digital images. Int. J. Comput. Sci. Bus. Inform. 9(1), 91–102 (2014)Google Scholar
- 7.Luo, W., Huang, J., Qiu, G.: Robust detection of region-duplication forgery in digital image. In: Proceedings of 18th International Conference on Pattern Recognition IEEE, vol. 4, pp. 746–749 (2006)Google Scholar
- 8.Mishra, M., Adhikary, M.C.: Robust detection of intensity variant clones in forged and JPEG compressed images. ANVESA 9(1), 48–60 (2014)Google Scholar
- 9.Fridrich, J., Soukal, D., Lukas, J.: Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop (2003)Google Scholar
- 10.Murali, S., Chittapur, G.B., Prabhakara H.S., Anami, B.S.: Comparison and analysis of photo image forgery detection techniques. IJCA 2 (6), 45–56 (2012)Google Scholar
- 11.Zhouchen, L.: Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recogn. 42(11), 2492–2501 (2009)zbMATHCrossRefGoogle Scholar
- 12.Singh, R., Oberoi, A., Goel, N.: Copy–move forgery detection on digital images. Int. J. Comput. Appl 98 (9), (2014)Google Scholar
- 13.Zimba, M., Xingming, S.: DWT-PCA (EVD) based copy-move image forgery detection. Int. J. Digital Content Technol. Its Appl. 5(1), 251–258 (2011)CrossRefGoogle Scholar
- 14.Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Zimba, M., Xingming, S.: Fast and robust image cloning detection using block characteristics of DWT coefficients. Int. J. Digital Content Technol. Its Appl. 5(7), 359–367 (2011)CrossRefGoogle Scholar
- 16.Mahdian, B., Saic, S.: Detection of copy–move forgery using a method based on blur moment invariants. Forensic Sci. Int. 171(2), 180–189 (2007)CrossRefGoogle Scholar
- 17.Junhong, Z.: Detection of copy-move forgery based on one improved LLE method. In: Advanced Computer Control (ICACC) IEEE, vol. 4, pp. 547–550 (2010)Google Scholar
- 18.Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
- 19.Kaur, R.: Copy–move forgery detection utilizing local binary patterns. Int. J. Emerg. Technol. Comput. Appl. Sci. 7(3), 290–294 (2013)Google Scholar
- 20.Muhammad, N., Muhammad, H., Muhammad, G., Bebis, G.: Copy–move forgery detection using dyadic wavelet transform. In: Eighth International Conference on IEEE Computer Graphics, Imaging and Visualization (CGIV), pp. 103–108 (2011)Google Scholar
- 21.Wang, X., Zhang, X., Li, Z., Wang, S.: A DWT-DCT based passive forensics method for copy-move attacks. In: 2011 Third International Conference on Multimedia Information Networking and Security, IEEE, pp. 304–308 (2011)Google Scholar
- 22.Zhang, J., Feng, Z., Su, Y.: A new approach for detecting copy–move forgery in digital images. In: 11th IEEE Singapore International Conference on IEEE Communication Systems, pp. 362–366 (2008)Google Scholar
- 23.Li, G., Wu, Q., Tu, D., Sun, S.: A sorted neighbourhood approach for detecting duplicated regions in image forgeries based on DWT and SVD. In: IEEE International Conference on Multimedia and Expo, pp. 1750–1753 (2007)Google Scholar
- 24.Popescu, A, Farid, H.: Exposing digital forgeries by detecting duplicated image regions. Technical Report TR2004-515, Department of Computer Science, Dartmouth College, pp. 1–1 (2004)Google Scholar
- 25.Amtullah, S., Koul, A.: Passive image forensic method to detect copy–move forgery in digital images. IOSR-JCE 16(2), 96–104 (2014)CrossRefGoogle Scholar
- 26.Shivakumar, B.L., Baboo L.D.S.S.: Detection of region duplication forgery in digital images using SURF. Int. J. Comput. Sci. Issues 8(4), (2011)Google Scholar
- 27.Prerna, C., Percy, G.J., Angaline, S., Thanga, B.I.: A key-point based copy–move forgery detection. Int. J. Adv. Inform. Sci. Technol. 12(12), 175–180 (2013)Google Scholar
- 28.Sagawa, R., Masuda, T., Ikeuchi, K.: Effective nearest neighbor search for aligning and merging range images, In: Fourth International Conference on IEEE 3-D Digital Imaging and Modeling, pp. 54–61 (2003)Google Scholar
- 29.Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Huang, H., Guo, W., Zhang, Y.: Detection of copy–move forgery in digital images using SIFT algorithm. Comput. Intell. Ind. Appl. Pacific-Asia Workshop IEEE 2, 272–276 (2008)Google Scholar
- 31.Lowe, D.G.: Distinctive image features from scale-invariant key points. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
- 32.Muhammad, N., Hussain, M., Muhammad, G., Bebis, G.: A non-intrusive method for copy-move forgery detection. In: International Symposium on Visual Computing. Springer, Berlin, pp. 516–525 (2011)Google Scholar
- 33.Oommen, R.S., Jayamohan, M.: A hybrid copy–move forgery detection technique using regional similarity indices. Int. J. Comput. Sci. Inform. Technol. 7(4), 127–134 (2015)Google Scholar
- 34.Bayram, S., Sencar, T., Memon, N.: An efficient and robust method for detecting copy–move forgery. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1053−1056 (2009)Google Scholar
- 35.Solorio, S.B., Nandi, A.K.: Passive forensic method for detecting duplicated regions affected by reflection, rotation and scaling. In: 17th IEEE European Signal Processing Conference, pp. 824–828 (2009)Google Scholar