Skip to main content

From FET to SET: A Review

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 443))

Abstract

Scaling has played an important role in reducing the size of the transistor so as to govern the Moore’s law, but we cannot always simply scale down the size of the transistor without some deterioration in the performance of the transistor. These effects are termed as short-channel effects such as drain-induced barrier lowering, threshold voltage shift, leakage current, gate-induced drain lowering, hot carrier effect, etc. In this paper, we have reviewed different gated structures such as single gate, double gate, triple gate and gate all around which will control the electrostatic potential in the channel and reduce these short-channel effects. A molecular transistor, i.e., single electron transistor (SET) is also reviewed in this paper; SET shows better performance and reduced short-channel effects. In this molecular structure, either coulomb blockade or tunneling takes place, due to which it has better control over the flow of the electron.

This is a preview of subscription content, log in via an institution.

References

  1. Bardeen, J., Brattain, W.H.: The transistor, a semi-conductor triode. Phys. Rev. 74, 230–231 (1948)

    Article  Google Scholar 

  2. Moore, G.E.: Progress in digital integrated electronics. Electron Devices Meeting 1975, pp. 11–13 (1975)

    Google Scholar 

  3. Baccarani, G., Wordeman, M., Dennard, R.: Generalised scaling theory and its application to a ¼ micrometer MOSFET design. IEEE Trans. Electron. Devices, pp. 452–462 (1984)

    Google Scholar 

  4. Naveh, Y., Likharev, K.K.: Shrinking limits of silicon MOSFETs: numerical study of 10 nm scale devices. Superlattices Microstruct. 111–123 (2000)

    Google Scholar 

  5. Chaudhry, A., Kumar, M.J.: Controlling short-channel effects in deep submicron SOI MOSFET’s for improved reliability: a review. IEEE Trans. Device Mater. Rel. 99–109 (2004)

    Google Scholar 

  6. Packan, P.: Pushing the limits. Science 285 (1999)

    Google Scholar 

  7. Garduño, S.I., Cerdeira, A., Estrada, M., Alvarado, J., Kilchystka, V., Flandre, D.: Contribution of the carrier tunnelling and gate induced drain leakage effects to the gate and drain currents of fin-shaped field effect transistor. J. Appl. Phys. 1–7 (2011)

    Google Scholar 

  8. Liu, Z.H.: Threshold voltage model for deep submicrometer MOSFETs. IEEE Trans. Electron Devices. 40 (1993)

    Google Scholar 

  9. Likharev K.: Single-electron devices and their applications. Proc. IEEE. 87, 606–632 (1999)

    Google Scholar 

  10. Yu, B., Wann, C.H.J., Nowak, E.D., Noda, K., Hu, C.: Short channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFETs. IEEE Trans. Electron Devices 627–634 (1997)

    Google Scholar 

  11. Zhang, Q., Zhao, W.: Low subthreshold swing tunnel transistors. IEEE Trans. Device Lett. 297–300 (2006)

    Google Scholar 

  12. Banna, S.R., Chan, P.C.H., Ko, P.K., Nguyen, C.T., Chan, M.: Threshold voltage model for deep-submicrometer fully depleted SOI MOSFET’s. IEEE Trans. Electron Devices 1949–1955 (1995)

    Google Scholar 

  13. Wolf S.: The Submicron MOSFET, vol. 3 of Silicon Processing for the VLSI Era. Lattice Press, Sunset Beach (1995)

    Google Scholar 

  14. Zhu, J., Martin, R., Chen, J.Y.: Punch through Current for submicrometer MOSFET’s in CMOS VLSI. IEEE Trans. Electron Devices 145–151 (1988)

    Google Scholar 

  15. Fischetti, M.V., Laux, S.E., Crabbe, E.: Understanding hot-electron transport in silicon devices—is there a shortcut. J. Appl. Phys. 1058–1087 (1995)

    Google Scholar 

  16. Ning, T.H., Osburn, C.M., Yu, H.N.: Emission probability of hot electrons from silicon into silicon dioxide. J. Appl. Phys. 48, 286–290 (1997)

    Article  Google Scholar 

  17. Chaudhry, A., Kumar, M.J.: Controlling short-channel effects in deep submicron SOI MOSFET’s for improved reliability: a review. IEEE Trans. Device Mater. 4, 99–109 (2004)

    Article  Google Scholar 

  18. Balestra, F., Cristoloveanu, S., Benachir, M., Brini, J., Elewa, T.: Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance. IEEE Electron Device Lett. 18, 410–412 (1987)

    Article  Google Scholar 

  19. Park, T., Choi, S., Lee, D.H., Yoo, J.R., Lee, B.C., Kim, J.Y., Lee, C.G., Chi, K.K., Hong, S.H., Hyun, S.J., Shin, Y.G., Han, J.N., Chung, U.I., Moon, J.T., Yoon, E., Lee, J.H.: Fabrication of body-tied FinFETs (Omega MOSFETs) using bulk si wafers. In: Technical Digest of Symposium on VLSI Tech (2003)

    Google Scholar 

  20. Xiong, W.W.: Multigate MOSFET technology. In: Colinge J.P. (ed.) FinFETs and Other Multi-Gate Transistors. Springer, US, pp. 84–91 (2008)

    Google Scholar 

  21. Colinge, J.P.: FinFETs and Other Multi-Gate Transistor. Springer, Berlin (2008)

    Google Scholar 

  22. Schwarz, M., Holtij, H., Kloes, A.: MOS: a new physics-based explicit compact model for lightly doped short-channel triple-gate SOI MOSFETs. IEEE Trans. Electron Devices 59, 349–358 (2012)

    Article  Google Scholar 

  23. Park, J.-T., Colinge, J.-P., Diaz, C.H.: Pi-gate SOI MOSFET. IEEE Electron Device Lett. 22, 405-406 (2001)

    Google Scholar 

  24. Daugé, F., Pretet, J., Cristoloveanu, S., Vandooren, A., Mathew, L., Jomaah, J., Nguyen, B.Y.: Coupling effects and channels separation in FinFETs. Solid State Electron. 48, 535–542 (2004)

    Article  Google Scholar 

  25. Jiang, Y., Singh, N., Liow, T.Y., Lim, P.C., Tripathy, S., Lo, G.Q., Chan, D.S.H., Kwong, L.: Omega-gate p-MOSFET with nanowire like SiGe/Si core/shell channel. IEEE Electron Device Lett. 30, 392–394 (2009)

    Article  Google Scholar 

  26. Barraud, S., Coquand, R., Cassé, M., Koyama, M., Hartmann, J.-M., Maffini-Alvaro, V., Comboroure, C., Vizioz, C., Aussenac, F., Faynot, O., Poiroux, T.: Performance of omega-shaped-gate silicon nanowire MOSFET with diameter down to 8 nm. IEEE Electron Device Lett. 33, 1526–1528 (2012)

    Article  Google Scholar 

  27. Jimenez, D., Saenz, J.J., Iniguez, B., Sune, J., Marsal, L.F., Pallares, J.: Modeling of nanoscale gate-all-around MOSFETs. IEEE Electron Device Lett. 25, 314–316 (2004)

    Article  Google Scholar 

  28. Song, J.Y.: Design optimization of gate-all-around (GAA) MOSFETs. IEEE Trans. Nanotechnol. 3, 186–191 (2006)

    Article  Google Scholar 

  29. Iniguez, B., Fjeldly, T.A., Lazaro, A., Danneville, F., Deen, J.: Compact modelling solutions for nanoscale double-gate and gate-all-around mosfets. IEEE Trans. Electron Devices 53, 2128–2142 (2006)

    Google Scholar 

  30. Smaani, B., Latreche, S., Iniguez, B.: Compact drain-current model for undoped cylindrical surrounding-gate metal-oxide semiconductor field effect transistors including short channel effects. J. Appl. Phys. 114, 224507–224512 (2013)

    Article  Google Scholar 

  31. Haensch, W., Nowak, E.J., Dennard, R.H., Solomon, P.M., et al.: Silicon CMOS devices beyond scaling. IBM J. Res. Dev. 50, 339 (2006)

    Article  Google Scholar 

  32. Li, C., Zhuang, Y., Han, R.: Cylindrical surrounding-gate MOSFETs with electrically induced source/drain extension. Microelectron. J. 42, 341–346 (2011)

    Google Scholar 

  33. Acharya, M.: Development of room temperature operating single electron transistor using FIB etching and deposition technology. Michigan Technological University (2009)

    Google Scholar 

  34. Mahapatra, S., Ionescu, A.M.: Hybrid CMOS single-electron transistor device and circuit design. Artech House, pp. 129–165 (2006)

    Google Scholar 

  35. Ihn, T.: Semiconductor Nanostructures: Quantum States and Electronic Transport. Oxford University Press (2009)

    Google Scholar 

  36. Mohammadi, H., Abdullah, H., Dee, C.F.: A Review on Modeling the Channel Potential in Multi-Gate MOSFETs, vol. 43, pp. 861–866. Sains Malaysiana Publications (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, A., Pradhan, P.C., Swain, B.P. (2018). From FET to SET: A Review. In: Kalam, A., Das, S., Sharma, K. (eds) Advances in Electronics, Communication and Computing. Lecture Notes in Electrical Engineering, vol 443. Springer, Singapore. https://doi.org/10.1007/978-981-10-4765-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4765-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4764-0

  • Online ISBN: 978-981-10-4765-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics