• Bin Zhuang
Part of the Springer Theses book series (Springer Theses)


The tradition classic approach toward genetic approach is present. Several methods for DNA extraction, amplification and electrophoresis are enumerated. Different kinds of approaches have their own advantages and application occasions. Microfluidic is a newly developed technology that aims at precisely manipulating fluidic of micro-scale. The microfluidic made it possible to integrate tradition genetic analysis process onto one single microchip for automation. Several trials have been made to transplant tradition process onto microfluidic platform, although various weak points restricted them from further industrialization. This chapter will give a brief introduction of the standard three-step process of genetic analysis on each step followed by a detailed expatiation on the development of microfluidic technology. All steps of genetic analysis, extraction, amplification and detection, have all been transplanted on-chip separately, and further researches also reported the integration of partial process. Several integrated systems are also introduced, along with careful evaluations. At the end of chapter, the significance of this study will be stated, and mainlines of following chapters will be addressed.


Microfluidic Platform Dimethylpolysiloxane (PDMS) Mathies Group Paper Chip Forensic Human Identification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose Nucleic Acid. Nature. 1953;171(4356):737–8.CrossRefGoogle Scholar
  2. 2.
    Collins FS, Patrinos A, Jordan E, Chakravarti A, Gesteland R, Walters L, et al. New goals for the US Human Genome Project: 1998-2003. Science. 1998;282(5389):682–9.CrossRefGoogle Scholar
  3. 3.
    Lander ES, Int Human Genome Sequencing C, Linton LM, Birren B, Nusbaum C, Zody MC, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.CrossRefGoogle Scholar
  4. 4.
    Tian HJ, Huhmer AFR, Landers JP. Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal Biochem. 2000;283(2):175–91.CrossRefGoogle Scholar
  5. 5.
    Sheldon EL, Levenson CH, Mullis KB, Rapoport H, inventors; Cetus Corp (Cetu-C), assignee. New reagents for labelling nucleic acids and their intermediates - contg. label, spacer and alkylating intercalation gp., useful for making hybridisation probes patent EP156287-A2; EP156287-A; AU8540188-A; JP60226888-A; DK8501216-A; US4582789-A; ES8606386-A; ZA8502126-A; IL74658-A. EP156287-A2 EP156287-A 02 Oct 1985 198540.Google Scholar
  6. 6.
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science. 1985;230(4732):1350–4.CrossRefGoogle Scholar
  7. 7.
    Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL, Roitman DB, et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A. 2008;105(4):1176–81.CrossRefGoogle Scholar
  8. 8.
    Jin C, Dalal RV, Petrov AN, Tsai A, O'Leary SE, Chapin K, et al. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc Natl Acad Sci U S A. 2014;111(2):664–9.CrossRefGoogle Scholar
  9. 9.
    Braslavsky I, Hebert B, Kartalov E, Quake SR. Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A. 2003;100(7):3960–4.CrossRefGoogle Scholar
  10. 10.
    Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, et al. Single-molecule DNA sequencing of a viral genome. Science. 2008;320(5872):106–9.CrossRefGoogle Scholar
  11. 11.
    Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time dna sequencing from single polymerase molecules. Science. 2009;323(5910):133–8.CrossRefGoogle Scholar
  12. 12.
    Kheterpal I, Scherer JR, Clark SM, Radhakrishnan A, Ju J, Ginther CL, et al. DNA sequencing using a four-color confocal fluorescence capillary array scanner. Electrophoresis. 1996;17(12):1852–9.CrossRefGoogle Scholar
  13. 13.
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci. 1977;74(12):5463.CrossRefGoogle Scholar
  14. 14.
    Jorgenson JW, Lukacs KD. Zone electrophoresis in open-tubular glass-capillaries. Anal Chem. 1981;53(8):1298–302.CrossRefGoogle Scholar
  15. 15.
    Jorgenson JW, Lukacs KD. Free-zone electrophoresis in glass-capillaries. Clin Chem. 1981;27(9):1551–3.Google Scholar
  16. 16.
    Cohen AS, Karger BL. High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins. J Chromatogr. 1987;397:409–17.CrossRefGoogle Scholar
  17. 17.
    Cohen AS, Terabe S, Smith JA, Karger BL. High-performance capillary electrophoretic separation of bases, nucleosides, and oligonucleotides - retention manipulation via micellar solutions and metal additives. Anal Chem. 1987;59(7):1021–7.CrossRefGoogle Scholar
  18. 18.
    Swerdlow H, Gesteland R. Capillary gel-electrophoresis for rapid, high-resolution dna sequencing. Nucleic Acids Res. 1990;18(6):1415–9.CrossRefGoogle Scholar
  19. 19.
    Swerdlow H, Zhang JZ, Chen DY, Harke HR, Grey R, SL W, et al. 3 DNA sequencing methods using capillary gel-electrophoresis and laser-induced fluorescence. Anal Chem. 1991;63(24):2835–41.CrossRefGoogle Scholar
  20. 20.
    Fodor SPA, Read JL, Pirrung MC, Stryer L, AT L, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science. 1991;251(4995):767–73.CrossRefGoogle Scholar
  21. 21.
    Yi S, Dhumpa R, Dang Duong B, Hogberg J, Handberg K, Wolff A. A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR. Lab Chip. 2011;11(8):1457–63.CrossRefGoogle Scholar
  22. 22.
    Mo Chao H, Hongye Y, Yoke Kong K, Mo-Huang L, Ying JY. Integrated two-step gene synthesis in a microfluidic device. Lab Chip. 2009;9(2):276–85.CrossRefGoogle Scholar
  23. 23.
    Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific dna-sequences. Biotechnology. 1992;10(4):413–7.CrossRefGoogle Scholar
  24. 24.
    Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis - real-time monitoring of DNA amplification reactions. Biotechnology. 1993;11(9):1026–30.Google Scholar
  25. 25.
    Gibson UEM, Heid CA, Williams PM. A novel method for real time quantitative RT PCR. Genome Res. 1996;6(10):995–1001.CrossRefGoogle Scholar
  26. 26.
    Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain-reaction product by utilizing the 5′- 3′ exonuclease activity of thermus-aquaticus DNA-polymerase. Proc Natl Acad Sci U S A. 1991;88(16):7276–80.CrossRefGoogle Scholar
  27. 27.
    Ronaghi M, Uhlén M, Nyrén PA. Sequencing method based on real-time pyrophosphate. Science. 1998;281(5375):363–5.CrossRefGoogle Scholar
  28. 28.
    Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 1996;242(1):84–9.CrossRefGoogle Scholar
  29. 29.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.Google Scholar
  30. 30.
    Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.CrossRefGoogle Scholar
  31. 31.
    Shendure J, Porreca GJ, Reppas NB, Lin XX, McCutcheon JP, Rosenbaum AM, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309(5741):1728–32.CrossRefGoogle Scholar
  32. 32.
    Turcatti G, Romieu A, Fedurco M, Tairi AP. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res. 2008;36:4.CrossRefGoogle Scholar
  33. 33.
    Adessi C, Matton G, Ayala G, Turcatti G, Mermod JJ, Mayer P, et al. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res. 2000;28(20).Google Scholar
  34. 34.
    Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res. 2006;34(3).Google Scholar
  35. 35.
    Clarke J, HC W, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4(4):265–70.CrossRefGoogle Scholar
  36. 36.
    McNally B, Singer A, ZL Y, Sun YJ, Weng ZP, Meller A. Optical recognition of converted dna nucleotides for single-molecule dna sequencing using nanopore arrays. Nano Lett. 2010;10(6):2237–44.CrossRefGoogle Scholar
  37. 37.
    Manz A, Graber N, Widmer HM. Miniaturized total chemical-analysis systems - a novel concept for chemical sensing. Sens Actuator B-Chem. 1990;1(1–6):244–8.CrossRefGoogle Scholar
  38. 38.
    Lamb LS. Responsibilities in point-of-care testing - an institutional perspective. Arch Pathol Lab Med. 1995;119(10):886–9.Google Scholar
  39. 39.
    Lamb LS Jr, Parrish RS, Goran SF, Biel MH. Current nursing practice of point-of-care laboratory diagnostic testing in critical care units. Am J Crit Care. 1995;4(6):429–34.Google Scholar
  40. 40.
    Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip. 2008;8(12):2146–50.CrossRefGoogle Scholar
  41. 41.
    Bruzewicz DA, Reches M, Whitesides GM. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem. 2008;80(9):3387–92.CrossRefGoogle Scholar
  42. 42.
    Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS. Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces. 2009;1(1):124–9.CrossRefGoogle Scholar
  43. 43.
    Abe K, Suzuki K, Citterio D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem. 2008;80(18):6928–34.CrossRefGoogle Scholar
  44. 44.
    Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem. 2010;398(2):885–93.CrossRefGoogle Scholar
  45. 45.
    Li X, Tian JF, Nguyen T, Shen W. Paper-based microfluidic devices by plasma treatment. Anal Chem. 2008;80(23):9131–4.CrossRefGoogle Scholar
  46. 46.
    Lu Y, Shi WW, Jiang L, Qin JH, Lin BC. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis. 2009;30(9):1497–500.CrossRefGoogle Scholar
  47. 47.
    Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81(16):7091–5.CrossRefGoogle Scholar
  48. 48.
    Costa MN, Veigas B, Jacob JM, Santos DS, Gomes J, Baptista PV, et al. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology 2014;25(9).Google Scholar
  49. 49.
    Mao X, Ma YQ, Zhang AG, Zhang LR, Zeng LW, Liu GD. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem. 2009;81(4):1660–8.CrossRefGoogle Scholar
  50. 50.
    Ge CC, LX Y, Fang ZY, Zeng LW. An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Anal Chem. 2013;85(19):9343–9.CrossRefGoogle Scholar
  51. 51.
    Xiao Z, Lie PC, Fang ZY, LX Y, Chen JH, Liu J, et al. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction. Chem Commun. 2012;48(68):8547–9.CrossRefGoogle Scholar
  52. 52.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2010;82(1):3–10.CrossRefGoogle Scholar
  53. 53.
    Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 2000;288(5463):113–6.CrossRefGoogle Scholar
  54. 54.
    Iwai K, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin LW. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip. 2014;14(19):3790–9.CrossRefGoogle Scholar
  55. 55.
    Cheng J, Sheldon EL, Wu L, Uribe A, Gerrue LO, Carrino J, et al. Preparation and hybridization analysis of DNA/RNA from E-coli on microfabricated bioelectronic chips. Nat Biotechnol. 1998;16(6):541–6.CrossRefGoogle Scholar
  56. 56.
    Cady NC, Stelick S, Batt CA. Nucleic acid purification using microfabricated silicon structures. Biosens Bioelectron. 2003;19(1):59–66.CrossRefGoogle Scholar
  57. 57.
    Breadmore MC, Wolfe KA, Arcibal IG, Leung WK, Dickson D, Giordano BC, et al. Microchip-based purification of DNA from biological samples. Anal Chem. 2003;75(8):1880–6.CrossRefGoogle Scholar
  58. 58.
    Azimi SM, Nixon G, Ahern J, Balachandran W. A magnetic bead-based DNA extraction and purification microfluidic device. Microfluid Nanofluid. 2011;11(2):157–65.CrossRefGoogle Scholar
  59. 59.
    Duarte GRM, Price CW, Littlewood JL, Haverstick DM, Ferrance JP, Carrilho E, et al. Characterization of dynamic solid phase DNA extraction from blood with magnetically controlled silica beads. Analyst. 2010;135(3):531–7.CrossRefGoogle Scholar
  60. 60.
    Nakagawa T, Tanaka T, Niwa D, Osaka T, Takeyama H, Matsunaga T. Fabrication of amino silane-coated microchip for DNA extraction from whole blood. J Biotechnol. 2005;116(2):105–11.CrossRefGoogle Scholar
  61. 61.
    Cao WD, Easley CJ, Ferrance JP, Landers JP. Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system. Anal Chem. 2006;78(20):7222–8.CrossRefGoogle Scholar
  62. 62.
    Elgort MG, Herrmann MG, Erali M, Durtschi JD, Voelkerding KV, Smith RE. Extraction and amplification of genomic DNA from human blood on nanoporous aluminum oxide membranes. Clin Chem. 2004;50(10):1817–9.CrossRefGoogle Scholar
  63. 63.
    Kim J, Voelkerding KV, Gale BK. Patterning of a nanoporous membrane for multi-sample DNA extraction. J Micromech Microeng. 2006;16(1):33–9.CrossRefGoogle Scholar
  64. 64.
    Kim J, Voelkerding KV, Gale BK. IEEE Multi-DNA extraction chip based on an aluminum oxide membrane integrated into a PDMS microfluidic structure. New York: IEEE; 2005. p. 5–7.Google Scholar
  65. 65.
    Kim J, Gale BK. Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AlOx membrane. Lab Chip. 2008;8(9):1516–23.CrossRefGoogle Scholar
  66. 66.
    Jangam SR, Yamada DH, McFall SM, Kelso DM. Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from whole blood for detection by real-time PCR. J Clin Microbiol. 2009;47(8):2363–8.CrossRefGoogle Scholar
  67. 67.
    Kim J, Mauk M, Chen DF, Qiu XB, Gale B, Bau HH. A PCR reactor with an integrated alumina membrane for nucleic acid isolation. Analyst. 2010;135(9):2408–14.CrossRefGoogle Scholar
  68. 68.
    Shoffner MA, Cheng J, Hvichia GE, Kricka LJ, Wilding P. Chip PCR .1. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Res. 1996;24(2):375–9.CrossRefGoogle Scholar
  69. 69.
    Cheng J, Shoffner MA, Hvichia GE, Kricka LJ, Wilding P. Chip PCR .2. Investigation of different PCR amplification systems in microfabricated silicon-glass chips. Nucleic Acids Res. 1996;24(2):380–5.CrossRefGoogle Scholar
  70. 70.
    Chaudhari AM, Woudenberg TM, Albin M, Goodson KE. Transient liquid crystal thermometry of microfabricated PCR vessel arrays. J Microelectromech Syst. 1998;7(4):345–55.CrossRefGoogle Scholar
  71. 71.
    Wilding P, Shoffner MA, Kricka LJPCR. in a silicon microstructure. Clin Chem. 1994;40(9):1815–8.Google Scholar
  72. 72.
    Belgrader P, Benett W, Hadley D, Richards J, Stratton P, Mariella R, et al. Infectious disease - PCR detection of bacteria in seven minutes. Science. 1999;284(5413):449–50.CrossRefGoogle Scholar
  73. 73.
    Gulliksen A, Solli L, Karlsen F, Rogne H, Hovig E, Nordstrom T, et al. Real-time nucleic acid sequence-based amplification in nanoliter volumes. Anal Chem. 2004;76(1):9–14.CrossRefGoogle Scholar
  74. 74.
    Pak N, Saunders DC, Phaneuf CR, Forest CR. Plug-and-play, infrared, laser-mediated PCR in a microfluidic chip. Biomed Microdevices. 2012;14(2):427–33.CrossRefGoogle Scholar
  75. 75.
    Lounsbury JA, Karlsson A, Miranian DC, Cronk SM, Nelson DA, Li JY, et al. From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis. Lab Chip. 2013;13(7):1384–93.CrossRefGoogle Scholar
  76. 76.
    Kopp MU, de Mello AJ, Manz A. Chemical amplification: continuous-flow PCR on a chip. Science. 1998;280(5366):1046–8.CrossRefGoogle Scholar
  77. 77.
    Nakano H, Matsuda K, Yohda M, Nagamune T, Endo I, Yamane T. High-speed polymerase chain-reaction in constant flow. Biosci Biotechnol Biochem. 1994;58(2):349–52.CrossRefGoogle Scholar
  78. 78.
    Mohr S, Zhang YH, Macaskill A, Day PJR, Barber RW, Goddard NJ, et al. Numerical and experimental study of a droplet-based PCR chip. Microfluid Nanofluid. 2007;3(5):611–21.CrossRefGoogle Scholar
  79. 79.
    Beer NR, Wheeler EK, Lee-Houghton L, Watkins N, Nasarabadi S, Hebert N, et al. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal Chem. 2008;80(6):1854–8.CrossRefGoogle Scholar
  80. 80.
    Carson S, Cohen AS, Belenkii A, Ruizmartinez MC, Berka J, Karger BL. DNA-sequencing by capillary electrophoresis - use of a 2-laser 2-window intensified diode-array detection system. Anal Chem. 1993;65(22):3219–26.CrossRefGoogle Scholar
  81. 81.
    Harrison DJ, Fluri K, Seiler K, Fan ZH, Effenhauser CS, Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science. 1993;261(5123):895–7.CrossRefGoogle Scholar
  82. 82.
    Woolley AT, Mathies RA. Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci U S A. 1994;91(24):11348–52.CrossRefGoogle Scholar
  83. 83.
    Woolley AT, Mathies RA. Ultra-high-speed DNA-sequencing using capillary electrophoresis chips. Anal Chem. 1995;67(20):3676–80.CrossRefGoogle Scholar
  84. 84.
    Emrich CA, Tian HJ, Medintz IL, Mathies RA. Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem. 2002;74(19):5076–83.CrossRefGoogle Scholar
  85. 85.
    Paegel BM, Emrich CA, Wedemayer GJ, Scherer JR, Mathies RA. High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc Natl Acad Sci U S A. 2002;99(2):574–9.CrossRefGoogle Scholar
  86. 86.
    Yeung SHI, Liu P, Del Bueno N, Greenspoon SA, Mathies RA. Integrated sample cleanup-capillary electrophoresis microchip for high-performance short tandem repeat genetic analysis. Anal Chem. 2009;81(1):210–7.CrossRefGoogle Scholar
  87. 87.
    Liu P, Greenspoon SA, Yeung SHI, Scherer JR, Mathies RA. Integrated Sample Cleanup and Microchip Capillary Array Electrophoresis for High-Performance Forensic STR Profiling. In: Alonso A, editor. DNA Electrophoresis Protocols for Forensic Genetics. Methods in Molecular Biology. 830: Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, Nj 07512–1165 USA; 2012. pp. 351–65.Google Scholar
  88. 88.
    Song LG, Fang DF, Kobos RK, Pace SJ, Chu B. Separation of double-stranded DNA fragments in plastic capillary electrophoresis chips by using E99P69E99 as separation medium. Electrophoresis. 1999;20(14):2847–55.CrossRefGoogle Scholar
  89. 89.
    Hsiung SK, Lin CH, Lee GB. A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection. Electrophoresis. 2005;26(6):1122–9.CrossRefGoogle Scholar
  90. 90.
    Koesdjojo MT, Tennico YH, Reincho VT. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer. Anal Chem. 2008;80(7):2311–8.CrossRefGoogle Scholar
  91. 91.
    Liu YJ, Ganser D, Schneider A, Liu R, Grodzinski P, Kroutchinina N. Microfabricated polycarbonate CE devices for DNA analysis. Anal Chem. 2001;73(17):4196–201.CrossRefGoogle Scholar
  92. 92.
    Ye MY, Yin XF, Fang ZL. DNA separation with low-viscosity sieving matrix on microfabricated polycarbonate microfluidic chips. Anal Bioanal Chem. 2005;381(4):820–7.CrossRefGoogle Scholar
  93. 93.
    Shi YN, Anderson RC. High-resolution single-stranded DNA analysis on 4.5 cm plastic electrophoretic microchannels. Electrophoresis. 2003;24(19–20):3371–7.CrossRefGoogle Scholar
  94. 94.
    Shi YN. DNA sequencing and multiplex STR analysis on plastic microfluidic devices. Electrophoresis. 2006;27(19):3703–11.CrossRefGoogle Scholar
  95. 95.
    Hurth C, Gu J, Aboud M, Estes MD, Nordquist AR, McCord B, et al. Direct loading of polymer matrices in plastic microchips for rapid DNA analysis: a comparative study. Electrophoresis. 2012;33(16):2604–11.CrossRefGoogle Scholar
  96. 96.
    Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, et al. A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability. Proc Natl Acad Sci. 2006;103(51):19272–7.CrossRefGoogle Scholar
  97. 97.
    Thaitrong N, Liu P, Briese T, Lipkin WI, Chiesl TN, Higa Y, et al. Integrated capillary electrophoresis microsystem for multiplex analysis of human respiratory viruses. Anal Chem. 2010;82(24):10102–9.CrossRefGoogle Scholar
  98. 98.
    Liu P, Seo TS, Beyor N, Shin KJ, Scherer JR, Mathies RA. Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing. Anal Chem. 2007;79(5):1881–9.CrossRefGoogle Scholar
  99. 99.
    Liu P, Yeung SHI, Crenshaw KA, Crouse CA, Scherer JR, Mathies RA. Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer. Forensic Sci Int-Genet. 2008;2(4):301–9.CrossRefGoogle Scholar
  100. 100.
    Beyor N, Yi LN, Seo TS, Mathies RA. Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal Chem. 2009;81(9):3523–8.CrossRefGoogle Scholar
  101. 101.
    Liu P, Li X, Greenspoon SA, Scherer JR, Mathies RA. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab Chip. 2011;11(6):1041–8.CrossRefGoogle Scholar
  102. 102.
    Bienvenue JM, Legendre LA, Ferrance JP, Landers JP. An integrated microfluidic device for DNA purification and PCR amplification of STR fragments. Forensic Sci Int-Genet. 2010;4(3):178–86.CrossRefGoogle Scholar
  103. 103.
    Lagally ET, Emrich CA, Mathies RA. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip. 2001;1(2):102–7.CrossRefGoogle Scholar
  104. 104.
    Shaw KJ, Joyce DA, Docker PT, Dyer CE, Greenway GM, Greenman J, et al. Development of a real-world direct interface for integrated DNA extraction and amplification in a microfluidic device. Lab Chip. 2011;11(3):443–8.CrossRefGoogle Scholar
  105. 105.
    Benhabib M, Chiesl TN, Stockton AM, Scherer JR, Mathies RA. Multichannel capillary electrophoresis microdevice and instrumentation for in situ planetary analysis of organic molecules and biomarkers. Anal Chem. 2010;82(6):2372–9.CrossRefGoogle Scholar
  106. 106.
    Scherer JR, Liu P, Mathies RA. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis. Rev Sci Instrum 2010;81(11).Google Scholar
  107. 107.
    Tae Seok S, Xiaopeng B, Dae Hyun K, Qinglin M, Shundi S, Ruparel H, et al. Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. Proc Natl Acad Sci U S A. 2005;102(17):5926–31.CrossRefGoogle Scholar
  108. 108.
    Xianbo Q, Dafeng C, Changchun L, Mauk MG, Kientz T, Bau HH. A portable, integrated analyzer for microfluidic - based molecular analysis. Biomed Microdevices. 2011;13(5):809–17.CrossRefGoogle Scholar
  109. 109.
    Kim TH, Park J, Kim CJ, Cho YK. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal Chem. 2014;86(8):3841–8.CrossRefGoogle Scholar
  110. 110.
    Raja S, Ching J, Xi LQ, Hughes SJ, Chang R, Wong W, et al. Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing. Clin Chem. 2005;51(5):882–90.CrossRefGoogle Scholar
  111. 111.
    Tan E, Turingan RS, Hogan C, Vasantgadkar S, Palombo L, Schumm JW, et al. Fully integrated, fully automated generation of short tandem repeat profiles. Investig Genet. 2013;4(1):16.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bin Zhuang
    • 1
  1. 1.National Engineering Research Center for Beijing Biochip TechnologyCapitalbio CorporationBeijingChina

Personalised recommendations