Skip to main content

Fermentation of Cereals: A Tool to Enhance Bioactive Compounds

  • Chapter
  • First Online:
Plant Biotechnology: Recent Advancements and Developments

Abstract

Popularity of antioxidant-rich food products are increasing day by day. Cereals being a major source of nutrients are still deficient in some basic nutritional components. So to improve their nutritional value, functional and sensory properties, interest has been shown to develop bioprocesses for the production of bioactive compounds and their applications in the field of food, chemical and pharmaceutical industries. Solid-state fermentation (SSF) has received greater attention as fermentation has the potential to release phenolic compounds from plant-based matrices. The potential application of fermentation process to convert the profile of phenolic compounds is mainly due to the release of bound phenolic compounds as a consequence of the degradation of the cell wall structure by microbial enzymes into unique metabolites through different bioconversion pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MR (1990) Topical aspects of fermented foods. Trends Food Sci Technol 8:140–144

    Article  Google Scholar 

  • Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6182–6187

    Article  CAS  PubMed  Google Scholar 

  • Aguilar CN, Aguilera-Carbo A, Robledo A et al (2008) Production of antioxidants nutraceuticals by solid-state cultures of pomegranate (Punica granatum) peel and creosote bush (Larrea tridentata) leaves. Food Technol Biotechnol 46:218–222

    CAS  Google Scholar 

  • Baublis A, Decker EA, Clydesdale FM (2000) Antioxidant effects of aqueous extracts from wheat- based ready-to-eat breakfast cereals. Food Chem 68:1–6

    Article  CAS  Google Scholar 

  • Bhanja Dey T, Kuhad RC (2014) Upgrading the antioxidant potential of cereals by their fungal fermentation under solid-state cultivation conditions. Lett Appl Microbiol 59:493–499

    Article  CAS  PubMed  Google Scholar 

  • Bhanja T, Rout S, Banerjee R et al (2008) Studies on the performance of a new bioreactor for improving antioxidant potential of rice. LWT Food Sci Technol 41:459–1465

    Article  Google Scholar 

  • Bhanja T, Kumari A, Banerjee R (2009) Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour Technol 100:2861–2866

    Article  CAS  PubMed  Google Scholar 

  • Blandino A, Al-Aseeri ME, Pandiella SS et al (2003) Cereal-based fermented foods and beverages. Food Res Int 36:527–543

    Article  CAS  Google Scholar 

  • Borgstrom G (1968) Principals of food science-ll, food microbiology and biochemistry. Macmillan, New York

    Google Scholar 

  • Cai S, Gao F, Zhang X et al (2012a) Evaluation of c-aminobutyric acid, phytate and antioxidant activity of tempeh-like fermented oats (Avena sativa L.) prepared with different filamentous fungi. J Food Sci Technol 51(10):2544–2551

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai S, Wang O, Wu W et al (2012b) Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.) J Agric Food Chem 60:507–513

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Wang O, Wu W et al (2011) Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.) J Agric Food Chem 60:507–513

    Article  PubMed  Google Scholar 

  • Campbell-Platt G (1994) Fermented foods- a world perspective. Food Res Int 27:253–257

    Article  Google Scholar 

  • Cerda A, Martinez ME, Soto C et al (2013) The enhancement of antioxidant compounds extracted from Thymus vulgaris using enzymes and the effect of extracting solvent. Food Chem 139:138–143

    Article  CAS  PubMed  Google Scholar 

  • Charalampopoulos D, Wang R, Pandiella SS et al (2002) Application of cereals and cereal components in functional foods. Int J Food Microbiol 79:131–141

    Article  CAS  PubMed  Google Scholar 

  • Charalampopoulos D, Vazquez JA, Pandiella SS (2009) Modelling and validation of Lactobacillus plantarum fermentations in cereal-based media with different sugar concentrations and buffering capacities. Biochem Eng J 44:96–105

    Article  CAS  Google Scholar 

  • Chavan JK, Kadam SS (1989) Nutritional improvement of cereals by fermentation. CRC Crit Rev Food Sci Nutrition 28:349–400

    Article  CAS  Google Scholar 

  • Chavan UD, Chavan JK, Kadam SS (1988) Effect of fermentation on soluble proteins and in vitro protein digestibility of sorghum, green gram and sorghum green gram blends. J Food Sci 53:1574

    Article  CAS  Google Scholar 

  • Christakopoulos P, Macris BJ, Kekos D (1990) Exceptionally thermostable α- galactosidases and β-galactosidases from Aspergillus niger separated in one step. Process Biochem Int 25:210–212

    CAS  Google Scholar 

  • Chutmanop J, Chuichulcherm S, Chisti Y et al (2008) Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. J Chem Technol Biotechnol 83:1012–1018

    Article  CAS  Google Scholar 

  • Coghe S, Benoot K, Delvaux F et al (2004) Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae. J Agric Food Chem 52:602–608

    Article  CAS  PubMed  Google Scholar 

  • Correia RTP, McCue P, Magalhaes MMA et al (2004) Phenolic antioxidant enrichment of soy flour-supplemented guava waste by Rhizopus oligosporus-mediated solid-state bioprocessing. J Food Biochem 28:404–418

    Article  Google Scholar 

  • Daker M, Abdullah N, Vikineswary S et al (2008) Antioxidant from maize and maize fermented by Marasmiellus sp. as stabiliser of lipid- rich foods. Food Chem 107:1092–1098

    CAS  Google Scholar 

  • Dey TB, Kuhad RC (2014) Enhanced production and extraction of phenolic compounds from wheat by solid-state fermentation with Rhizopus oryzae RCK2012. Biotechnol Rep 4:120–127

    Article  Google Scholar 

  • Dinis MJ, Bezerra RMF, Nunes F et al (2009) Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour Technol 100:4829–4835

    Article  CAS  PubMed  Google Scholar 

  • Dordevic TM, Siler-Marinkovic SS, Dimitrijevic-Brankovi SI (2010) Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem 119:957–963

    Article  CAS  Google Scholar 

  • Duenas M, Fernández D, Hernández T et al (2005) Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J Sci Food Agric 85:297–304

    Article  CAS  Google Scholar 

  • Duhan JS, Mehta K, Sadh PK, Saharan P, Surekha (2016) Bio-enrichment of phenolics and free radicals scavenging activity of wheat (WH-711) fractions by solid state fermentation with Aspergillus oryzae. Afr J Biochem Res 10(2):12–19. doi:10.5897/AJBR2015.0854

    Article  Google Scholar 

  • El-Bendary MA, Monoram D, Foda MS (2008) Efficient mosquitocidal toxin production by Bacillus sphaericus using cheese whey permeate under both submerged and solid state fermentations. J Invertebr Pathol 98:46–53

    Article  CAS  PubMed  Google Scholar 

  • Emmons CL, Peterson DM, Paul GL (1999) Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J Agric Food Chem 47:4894–4898

    Article  CAS  PubMed  Google Scholar 

  • Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faulds M, Williamson G (1999) The role of hydroxycinnamates in the plant cell wall. J Sci Food Agric 79:393–395

    Article  CAS  Google Scholar 

  • Gao M, Kaneko M, Hirata M et al (2008) Utilization of rice bran as nutrient source for fermentative lactic acid production. Bioresour Technol 99:3659–3664

    Article  CAS  PubMed  Google Scholar 

  • Georgetti SR, Vicentini FT, Yokoyama CY et al (2009) Enhanced in vitro and in vivo antioxidant activity and mobilization of free phenolic compounds of soybean flour fermented with different beta-glucosidase-producing fungi. J Appl Microbiol 106:459–466

    Google Scholar 

  • Grange DC, Pretorius IS, Zyl WH (1996) Expression of Trichoderma Reesi B-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl Environ Microbiol 62:1036–1044

    PubMed  PubMed Central  Google Scholar 

  • Guenter W (1997) Phytases in cereals and hemicelluloses in canola (rape seed) meal and lupins. In: Marquardt RR, Han Z (eds) Enzymes in poultry and swine nutrition. International Development Research Center, Ottawa, pp 99–114

    Google Scholar 

  • Gupta S, Kapoor M, Sharma KK et al (2008) Production and recovery of an alkaline exo-polygalacturonase from Bacillus subtilis RCK under solid-state fermentation using statistical approach. Bioresour Technol 99:937–945

    Article  CAS  PubMed  Google Scholar 

  • Hamad AM, Fields ML (1979) Evaluation of the protein quality and available lysine of germinated and fermented cereal. J Food Sci 44:456–459

    Article  CAS  Google Scholar 

  • Heinio RL, Katina K, Wilhelmson A et al (2003) Relationship between sensory perception and flavour-active volatile compounds of germinated, sourdough fermented and native rye following the extrusion process. LWT Food Sci Technol 36:533–545

    Article  CAS  Google Scholar 

  • Hernandez LF, Espinosa JC, Fernandez-Gonzalez M et al (2003) Glucosidase activity in a Saccharomyces cerevisiae wine strain. Int J Food Microbiol 80:171–176

    Article  CAS  PubMed  Google Scholar 

  • Hole AS, Rud I, Grimmer S et al (2012) Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J Agric Food Chem 60:6369–6375

    Article  CAS  PubMed  Google Scholar 

  • Hur SJ, Lee SY, Kim YC et al (2014) Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem 160:346–356

    Article  CAS  PubMed  Google Scholar 

  • Huynh NT, Van Camp J, Smagghe G et al (2014) Improved release and metabolism of flavonoids by steered fermentation processes: a review. Int J Mol Sci 15:19369–19388

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen M, Lei V (2004) Microbiological characterization and probiotic potential of koko and koko sour water, an African spontaneously fermented millet porridge and drink. J Appl Microbiol 96:384–397

    Article  PubMed  Google Scholar 

  • Ju HK, Cho EJ, Jang MH et al (2009) Characterization of increased phenolic compounds from fermented Bokbunja (Robus coreanus Miq.) and related antioxidant activity. J Pharm Biomed Anal 49:820–827

    Article  CAS  PubMed  Google Scholar 

  • Kagliwal LD, Survase SA, Singhal RS (2009) A novel medium for the production of cephamycin C by Nocardia lactamduransm using solid-state fermentation. Bioresour Technol 100:2600–2606

    Article  CAS  PubMed  Google Scholar 

  • Karaffa L, Sandor E, Fekete E et al (2001) The biochemistry of citric acid accumulation by Aspergillus niger. Acta Microbiol Immunol Hung 48:429–440

    Article  CAS  PubMed  Google Scholar 

  • Kariluoto S, Aittamaa M, Korhola M et al (2006) Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int J Food Microbiol 106:137–143

    Article  CAS  PubMed  Google Scholar 

  • Katina-Laitil A, Juvonen R, Liukkonen KH et al (2007) Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol 24:175–186

    Article  Google Scholar 

  • Kedia G, Wang R, Patel H et al (2007) Use of mixed cultures for the fermentation of cereal-based substrates with potential probiotic properties. Process Biochem 42:65–70

    Article  CAS  Google Scholar 

  • Kim HS, Chae HS, Jeong SG et al (2005) Antioxidant activity of some yogurt starter cultures. Asian-Australas J Anim Sci 18:255–258

    Article  Google Scholar 

  • Lee JH, Lee SK, Park KI et al (1999) Fermentation of rice using amylolytic Bifidobacterium. Int J Food Microbiol 50:155–161

    Article  CAS  Google Scholar 

  • Lee IH, Hung YH, Chou CC (2008) Solid-state fermentation with fungi to enhance the antioxidative activity, total phenolic and anthocyanin contents of black bean. Int J Food Microbiol 121:150–156

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lu J, Yang Z et al (2012) Utilization of white rice bran for production of lactic acid. Biomass Bioenergy 39:53–58

    Article  Google Scholar 

  • Lin CH, Wei YT, Chou CC (2006) Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food Microbiol 23:628–633

    Article  CAS  PubMed  Google Scholar 

  • Marazza JA, Garro MS, Savoy de Giori G (2009) Aglycone production by Lactobacillus rhamnosus CRL981 during soymilk fermentation. Food Microbiol 26:333–339

    Article  CAS  PubMed  Google Scholar 

  • Martins ES, Silva D, Da Silva R et al (2002) Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus. Process Biochem 37:949–954

    Article  CAS  Google Scholar 

  • Martins S, Mussatto SI, Martínez-Avila G et al (2011) Bioactive phenolic compounds: production and extraction by solid-state fermentation: a review. Biotechnol Adv 29:365–373

    Article  CAS  PubMed  Google Scholar 

  • Mateo AN, Selinheimo E, Havenaar R et al (2009a) Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. J Agric Food Chem 57:6148–6155

    Article  Google Scholar 

  • Mateo AN, Berg R, Havenaar R et al (2009b) Bioavailability of ferulic acid is determined by its bioaccessibility. J Cereal Sci 49:296–300

    Article  Google Scholar 

  • Mattila-Sandholm T (1998) VTT on lactic acid bacteria. VTT Symposium 156:1–10

    Google Scholar 

  • McCue P, Horii A, Shetty K (2003) Solid-state bioconversion of phenolic antioxidants from defatted soybean powders by Rhizopus oligosporus: role of carbohydrate-cleaving enzymes. J Food Biochem 27:501–514

    Article  CAS  Google Scholar 

  • Mensah P (1997) Fermentation-the key to food safety assurance in Africa. Food Control 8:271–278

    Article  Google Scholar 

  • Miller NJ, Rice-Evans CA (1997) Factors influencing the antioxidant activity determined by the ABT - radical cation assay. Free Radic Res 26:195–199

    Google Scholar 

  • Moore J, Cheng Z, Hao J et al (2007) Effects of solid-state yeast treatment on the antioxidant properties and protein and fibre compositions of common hard wheat bran. J Agric Food Chem 55:10173–10182

    Article  CAS  PubMed  Google Scholar 

  • Mouquet RC, Icard VC, Guyot JP et al (2008) Consumption pattern, biochemical composition and nutritional value of fermented pearl millet gruels in Burkina Faso. Int J Food Sci Nutr 59:716–729

    Article  Google Scholar 

  • Napolitano A, Costabile A, Martin-Pelaez S et al (2009) Potential prebiotic activity of oligosaccharides obtained by enzymatic conversion of durum wheat in soluble dietary fibre into soluble dietary fibre. Nutr Metab Cardiovasc Dis 19:283–290

    Article  CAS  PubMed  Google Scholar 

  • Ng CC, Wang CY, Wang YP et al (2011) Lactic acid bacterial fermentation on the production of functional antioxidant herbal Anoectochilus formosanus Hayata. J Biosci Bioeng 111:289–293

    Article  CAS  PubMed  Google Scholar 

  • Nout MJR (1993) Processed weaning foods for tropical climates. Int J Food Sci Nutr 43:213–221

    Article  Google Scholar 

  • Nout MJR, Ngoddy PO (1997) Technological aspects of preparing affordable fermented complementary foods. Food Control 8:279–287

    Article  Google Scholar 

  • Orzua MC, Mussatto SI, Contreras-Esquivel JC et al (2009) Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind Crop Prod 30:24–27

    Article  CAS  Google Scholar 

  • Pinelo M, Arnous A, Meyer AS (2006) Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci Technol 17:579–590

    Article  CAS  Google Scholar 

  • Prabhu AA, Mrudula CM, Rajesh J (2014) Effect of yeast fermentation on nutraceutical and antioxidant properties of rice bran. Int J Agric Food Sci 4:59–65

    Google Scholar 

  • Pugalenthi M, Vadivel V (2005) Nutritional evaluation and the effect of processing methods on antinutritional factors of sword bean (Canavalia gladiata). J Food Sci Technol 42:510–516

    Google Scholar 

  • Razak DLA, Rashid NYA, Jamaluddin A et al (2015) Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae. J Saudi Soc Agric Sci 04:001. doi org/101016/jjssas2015

    Google Scholar 

  • Rodríguez H, Curiel JA, Landete JM et al (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132:79–90

    Article  PubMed  Google Scholar 

  • Sandhu KS, Punia S, Kaur M (2016) Effect of duration of solid state fermentation by Aspergillus awamorinakazawa on antioxidant properties of wheat cultivars. LWT Food Sci Technol 71:323–328

    Article  CAS  Google Scholar 

  • Sanni AI (1993) The need for process optimization of african fermented foods and beverages. Int J Food Microbiol 18:85–95

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CG, Gonçalves LM, Prietto L et al (2014) Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rhizopus oryzae. Food Chem 146:371–377

    Article  CAS  PubMed  Google Scholar 

  • Senter SD, Horvat RJ, Forbus WR (1983) Comparative GLCMS analysis of phenolic acids of selected tree nuts. J Food Sci 48:798–803

    Article  CAS  Google Scholar 

  • Singh HB, Singh BN, Singh SP et al (2010) Solid-state cultivation of Trichoderma Harzianum NBRI-1055 for modulating natural antioxidants in soybean seed matrix. Bioresour Technol 101:6444–6453

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Rehal J, Kaur A et al (2015) Enhancement of attributes of cereals by germination and fermentation: a review. Crit Rev Food Sci Nutr 55:1575–1589

    Article  CAS  PubMed  Google Scholar 

  • Singhania RR, Patel AK, Soccol CR et al (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18

    Article  CAS  Google Scholar 

  • Solomon TPJ, Blannin AK (2007) Effects of short-term cinnamon ingestion on in vivo glucose tolerance. Diabetes Obes Metab 9:895–901

    Google Scholar 

  • Steinkraus KH (1994) Nutritional significance of fermented food. Food Res Int 27:259–267

    Article  Google Scholar 

  • Steinkraus KH (1998) Bio-enrichment: production of vitamins in fermented foods. In: Wood JB (ed) Microbiology of fermented foods. Blackie Academic and Professional, London, pp 603–619

    Chapter  Google Scholar 

  • Svanberg U, Lorri W (1997) Fermentation and nutrient availability. Food Control:319–327

    Google Scholar 

  • Tanaka T, Hoshina M, Tanabe S et al (2006) Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol 97:211–217

    Article  CAS  PubMed  Google Scholar 

  • Topakas E, Kalogeris E, Kekos D et al (2003) Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. LWT Food Sci Technol 36:561–565

    Article  CAS  Google Scholar 

  • Ustok FI, Tari C, Gogus N (2007) Solid-state production of polygalacturonase by Aspergillus sojae ATCC 20235. J Biotechnol 127:322–334

    Article  CAS  PubMed  Google Scholar 

  • Vattem DA, Lin YT, Labbe RG et al (2004) Antimicrobial activity against select food-borne pathogens by phenolic antioxidants enriched in cranberry pomace by solid-state bioprocessing using the food grade fungus Rhizopus oligosporus. Process Biochem 39:1939–1946

    Article  CAS  Google Scholar 

  • Vitaglione P, Aurora N, Fogliano V (2008) Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci Technol 19:451–463

    Article  CAS  Google Scholar 

  • Wang YD, Fields ML (1978) Feasibility of home fermentation to improve the amino acid balance of corn meal. J Food Sci 43:1104

    Article  CAS  Google Scholar 

  • Watanabe M, Makino M, Kaku N et al (2013) Fermentative L-(+)-lactic acid production from non-sterilized rice washing drainage containing rice bran by a newly isolated lactic acid bacteria without any additions of nutrients. J Biosci Bioeng 115:449–452

    Article  CAS  PubMed  Google Scholar 

  • Westby A, Reilly A, Zoe B (1997) Review of the effect of fermentation on naturally occurring toxins. Food Control 8:329–339

    Article  Google Scholar 

  • Wu Z, Song L, Huang D (2011) Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced polyphenolic antioxidants. J Agric Food Chem 59:5993–6003

    Article  CAS  PubMed  Google Scholar 

  • Yadav G, Singh A, Bhattacharya P et al (2013) Comparative analysis of solid-state bioprocessing and enzymatic treatment of finger millet for mobilization of bound phenolics. Bioprocess Biosyst Eng 36:1563–1569

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang X, Tan T (2008) Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Process Technol 89:1056–1059

    Article  CAS  Google Scholar 

  • Yu M, Zeng G, Chen Y et al (2009) Influence of Phanerochaete chrysosporium on microbial communities and lignocellulose degradation during solid-state fermentation of rice straw. Process Biochem 44:17–22

    Article  CAS  Google Scholar 

  • Zhang Z, Lei Z, Lu Y et al (2008) Chemical composition and bioactivity changes in stale rice after fermentation with Cordyceps sinensis. J Biosci Bioeng 106:188–193

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Xia L (2009) Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using recombinant yeast strain. Fuel Process Technol 99:1193–1197

    Article  Google Scholar 

  • Zheng Z, Shetty K (2000) Solid-state bioconversion of phenolics from cranberry pomace and role of lentinus edodes β-glucosidase. J Agric Food Chem 48:895–900

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawaljit Singh Sandhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sandhu, K.S., Punia, S., Kaur, M. (2017). Fermentation of Cereals: A Tool to Enhance Bioactive Compounds. In: Gahlawat, S., Salar, R., Siwach, P., Duhan, J., Kumar, S., Kaur, P. (eds) Plant Biotechnology: Recent Advancements and Developments. Springer, Singapore. https://doi.org/10.1007/978-981-10-4732-9_8

Download citation

Publish with us

Policies and ethics