Advertisement

Label-Free Biosensors for Early Diagnosis of Cancer Based on G-Quadruplex and Isothermal Amplification

  • Yahui Guo
  • Weirong Yao
  • Renjun PeiEmail author
Chapter

Abstract

Cancer has become the leading cause of death worldwide, especially in developing countries that account for 70% of the world’s cancer deaths. Early diagnosis of cancer can help reduce the cancer mortality, and burdens can be reduced if low-cost assays are developed and utilized. In this chapter, we presented recent works on label-free and ultrasensitive detections of cancer biomarkers for low-cost early diagnosis of cancers based on G-quadruplex and isothermal amplification. We firstly explained the concept of “label-free biosensor”, and then introduced the property and serviceability of G-quadruplex in label-free biosensors. After a brief description of the advantages of isothermal amplification, recent reported works based on G-quadruplex and isothermal amplification were illustrated and classified by types of targets including gene mutation, microRNA, enzyme activity, protein and small molecule. Finally, conclusion and perspective were made that the employment of ratiometric detection and DNA logic gates would promote the cancer diagnosis in a more reliable, cost-saving and time-saving way.

References

  1. Allain C, Monchaud D, Teulade-Fichou MP (2006) FRET templated by G-quadruplex DNA: a specific ternary interaction using an original pair of donor/acceptor partners. J Am Chem Soc 128:11890–11893PubMedCrossRefGoogle Scholar
  2. Alzeer J, Vummidi BR, Roth PJC, Luedtke NW (2009) Guanidinium-modified phthalocyanines as high-affinity G-quadruplex fluorescent probes and transcriptional regulators. Angew Chem Int Ed 48:9362–9365CrossRefGoogle Scholar
  3. Arora A, Balasubramanian C, Kumar N, Agrawal S, Ojha RP, Maiti S (2008) Binding of berberine to human telomeric quadruplex – spectroscopic, calorimetric and molecular modeling studies. FEBS J 275:3971–3983PubMedCrossRefGoogle Scholar
  4. Baker M (2010) RNA interference Micrornas as biomarkers. Nature 464:1227–1227PubMedCrossRefGoogle Scholar
  5. Bertram JS (2000) The molecular biology of cancer. Mol Asp Med 21:167–223CrossRefGoogle Scholar
  6. Bhasikuttan AC, Mohanty J, Pal H (2007) Interaction of malachite green with guanine-rich single-stranded DNA: preferential binding to a G-quadruplex. Angew Chem Int Ed 46:9305–9307CrossRefGoogle Scholar
  7. Bi S, Cui YY, Li L (2013) Dumbbell probe-mediated cascade isothermal amplification: a novel strategy for label-free detection of microRNAs and its application to real sample assay. Anal Chim Acta 760:69–74PubMedCrossRefGoogle Scholar
  8. Bours V, Dejardin E, Goujon-Letawe F, Merville MP, Castronovo V (1994) The NF-kappa B transcription factor and cancer: high expression of NF-kappa B- and I kappa B-related proteins in tumor cell lines. Biochem Pharmacol 47:145–149PubMedCrossRefGoogle Scholar
  9. Bussing I, Slack FJ, Grosshans H (2008) Let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 14:400–409PubMedCrossRefGoogle Scholar
  10. Buys CH (2000) Telomeres, telomerase, and cancer. N Engl J Med 342:1282–1283PubMedCrossRefGoogle Scholar
  11. Cao Y, Liu M, Zhang K, Zu G, Kuang Y, Tong X, Xiong D, Pei R (2017) Poly(glycerol) used for constructing mixed polymeric micelles as T1 MRI contrast agent for tumor-targeted imaging. Biomacromolecules 18:150–158PubMedCrossRefGoogle Scholar
  12. Chang CC, Wu JY, Chien CW, Wu WS, Liu H, Kang CC, Yu LJ, Chang TC (2003) A fluorescent carbazole derivative: high sensitivity for quadruplex DNA. Anal Chem 75:6177–6183PubMedCrossRefGoogle Scholar
  13. Chang N, Lu Y, Mao J, Yang J, Li M, Zhang S, Liu Y (2016) Ratiometric fluorescence sensor arrays based on quantum dots for detection of proteins. Analyst 141:2046–2052PubMedCrossRefGoogle Scholar
  14. Chen J, Lin J, Zhang X, Cai S, Wu D, Li C, Yang S, Zhang J (2014) Label-free fluorescent biosensor based on the target recycling and Thioflavin T-induced quadruplex formation for short DNA species of c-erbB-2 detection. Anal Chim Acta 817:42–47PubMedCrossRefGoogle Scholar
  15. Chen A, Ma S, Zhuo Y, Chai Y, Yuan R (2016) In situ electrochemical generation of electrochemiluminescent silver naonoclusters on target-cycling synchronized rolling circle amplification platform for MicroRNA detection. Anal Chem 88:3203–3210PubMedCrossRefGoogle Scholar
  16. Chen HC, Huang HY, Chen YL, Lee KD, Chu YR, Lin PY, Hsu CC, Chu PY, Huang TH, Hsiao SH, Leu YW (2017) Methylation of the tumor suppressor genes HIC1 and RassF1A clusters independently from the methylation of Polycomb target genes in Colon cancer. Ann Surg Oncol 24:578–585PubMedCrossRefGoogle Scholar
  17. Cheng FF, Jiang N, Li X, Zhang L, Hu L, Chen X, Jiang LP, Abdel-Halim ES, Zhu JJ (2016) Target-triggered triple isothermal cascade amplification strategy for ultrasensitive microRNA-21 detection at sub-attomole level. Biosens Bioelectron 85:891–896PubMedCrossRefGoogle Scholar
  18. Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS (2009) Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28:3526–3536PubMedPubMedCentralCrossRefGoogle Scholar
  19. Das J, Ivanov I, Montermini L, Rak J, Sargent EH, Kelley SO (2015) An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat Chem 7:569–575PubMedCrossRefGoogle Scholar
  20. Dhama K, Karthik K, Chakraborty S, Tiwari R, Kapoor S, Kumar A, Thomas P (2014) Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review. Pak J Biol Sci 17:151–166PubMedCrossRefGoogle Scholar
  21. Dumat B, Bordeau G, Faurel-Paul E, Mahuteau-Betzer F, Saettel N, Bombled M, Metge G, Charra F, Fiorini-Debuisschert C, Teulade-Fichou MP (2011) N-phenyl-carbazole-based two-photon fluorescent probes: strong sequence dependence of the duplex vs quadruplex selectivity. Biochimie 93:1209–1218PubMedCrossRefGoogle Scholar
  22. Freeman R, Liu X, Willner I (2011) Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133:11597–11604PubMedCrossRefGoogle Scholar
  23. Galezowska E, Gluszynska A, Juskowiak B (2007) Luminescence study of G-quadruplex formation in the presence of Tb3+ ion. J Inorg Biochem 101:678–685PubMedCrossRefGoogle Scholar
  24. Gao Y, Feng B, Han S, Zhang K, Chen J, Li C, Wang R, Chen L (2016) The roles of MicroRNA-141 in human cancers: from diagnosis to treatment. Cell Physiol Biochem 38:427–448PubMedCrossRefGoogle Scholar
  25. Granotier C, Pennarun G, Riou L, Hoffschir F, Gauthier LR, De Cian A, Gomez D, Mandine E, Riou JF, Mergny JL, Mailliet P, Dutrillaux B, Boussin FD (2005) Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucleic Acids Res 33:4182–4190PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gravalos C, Jimeno A (2008) HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 19:1523–1529PubMedCrossRefGoogle Scholar
  27. Guan Z, Liu J, Bai W, Lv Z, Jiang X, Yang S, Chen A, Lv G (2014) Label-free and sensitive fluorescent detection of sequence-specific single-strand DNA based on S1 nuclease cleavage effects. PLoS One 9:e108401PubMedPubMedCentralCrossRefGoogle Scholar
  28. Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR (1990) Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci U S A 87:1874–1878PubMedPubMedCentralCrossRefGoogle Scholar
  29. Guo Q, Lu M, Marky LA, Kallenbach NR (1992) Interaction of the dye ethidium bromide with DNA containing guanine repeats. Biochemistry 31:2451–2455PubMedCrossRefGoogle Scholar
  30. Guo Y, Xu P, Hu H, Zhou X, Hu J (2013) A label-free biosensor for DNA detection based on ligand-responsive G-quadruplex formation. Talanta 114:138–142PubMedCrossRefGoogle Scholar
  31. Guo Y, Cheng J, Wang J, Zhou X, Hu J, Pei R (2014a) Label-free logic modules and two-layer Cascade based on stem-loop probes containing a G-Quadruplex domain. Chem-Asian J 9:2397–2401PubMedCrossRefGoogle Scholar
  32. Guo Y, Zhou L, Xu L, Zhou X, Hu J, Pei R (2014b) Multiple types of logic gates based on a single G-quadruplex DNA strand. Sci Rep 4:7315PubMedPubMedCentralCrossRefGoogle Scholar
  33. Guo Y, Sun Y, Shen X, Chen X, Yao W, Xie Y, Hu J, Pei R (2015a) Quantification of Zn(II) using a label-free sensor based on graphene oxide and G-quadruplex. Anal Methods 7:9615–9618CrossRefGoogle Scholar
  34. Guo Y, Sun Y, Shen X, Zhang K, Hu J, Pei R (2015b) Label-free detection of Zn2+ based on G-quadruplex. Anal Sci 31:1041–1045PubMedCrossRefGoogle Scholar
  35. Guo Y, Wang Q, Wang Z, Chen X, Xu L, Hu J, Pei R (2015c) Label-free detection of T4 DNA ligase and polynucleotide kinase activity based on toehold-mediated strand displacement and split G-quadruplex probes. Sensors Actuators B-Chem 214:50–55CrossRefGoogle Scholar
  36. Guo Y, Chen Q, Qi Y, Xie Y, Qian H, Yao W, Pei R (2016a) Label-free ratiometric DNA detection using two kinds of interaction-responsive emission dyes. Biosens Bioelectron 87:320–324PubMedCrossRefGoogle Scholar
  37. Guo Y, Xu L, Hong S, Sun Q, Yao W, Pei R (2016b) Label-free DNA-based biosensors using structure-selective light-up dyes. Analyst 141:6481–6489PubMedCrossRefGoogle Scholar
  38. Guo Y, Yao W, Xie Y, Zhou X, Hu J, Pei R (2016c) Logic gates based on G-quadruplexes: principles and sensor applications. Microchim Acta 183:21–34CrossRefGoogle Scholar
  39. Han FXG, Wheelhouse RT, Hurley LH (1999) Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition. J Am Chem Soc 121:3561–3570CrossRefGoogle Scholar
  40. Hao Y, Guo Q, Wu H, Guo L, Zhong L, Wang J, Lin T, Fu F, Chen G (2014) Amplified colorimetric detection of mercuric ions through autonomous assembly of G-quadruplex DNAzyme nanowires. Biosens Bioelectron 52:261–264PubMedCrossRefGoogle Scholar
  41. He K, Li W, Nie Z, Huang Y, Liu Z, Nie L, Yao S (2012) Enzyme-regulated activation of DNAzyme: a novel strategy for a label-free colorimetric DNA ligase assay and ligase-based biosensing. Chemistry 18:3992–3999PubMedCrossRefGoogle Scholar
  42. Hong Y, Haussler M, Lam JW, Li Z, Sin KK, Dong Y, Tong H, Liu J, Qin A, Renneberg R, Tang BZ (2008) Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics. Chemistry 14:6428–6437PubMedCrossRefGoogle Scholar
  43. Hu Q, Zeng F, Wu S (2016) A ratiometric fluorescent probe for hyaluronidase detection via hyaluronan-induced formation of red-light emitting excimers. Biosens Bioelectron 79:776–783PubMedCrossRefGoogle Scholar
  44. Jain AK, Bhattacharya S (2011) Interaction of G-quadruplexes with nonintercalating duplex-DNA minor groove binding ligands. Bioconjug Chem 22:2355–2368PubMedCrossRefGoogle Scholar
  45. Jiang X, Zhang H, Wu J, Yang X, Shao J, Lu Y, Qiu B, Lin Z, Chen G (2014) G-quadruplex DNA biosensor for sensitive visible detection of genetically modified food. Talanta 128:445–449PubMedCrossRefGoogle Scholar
  46. Jin X, Yue S, Wells KS, Singer VL (1994) SYBR green-TM-1: a new fluorescent dye optimized for detection of picogram amounts of DNA in gels. Biophys J 66:A159Google Scholar
  47. Jonsson U, Fagerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, Lofas S, Persson B, Roos H, Ronnberg I et al (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. BioTechniques 11:620–627PubMedGoogle Scholar
  48. Kolpashchikov DM (2008) Split DNA enzyme for visual single nucleotide polymorphism typing. J Am Chem Soc 130:2934–2935PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kong DM, Ma YE, Wu J, Shen HX (2009) Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet. Chemistry 15:901–909PubMedCrossRefGoogle Scholar
  50. Largy E, Granzhan A, Hamon F, Verga D, Teulade-Fichou MP (2013) Visualizing the quadruplex: from fluorescent ligands to light-up probes. Top Curr Chem 330:111–177PubMedCrossRefGoogle Scholar
  51. Lee IJ, Goo NI, Kim DE (2016) Label/quencher-free detection of single-nucleotide changes in DNA using isothermal amplification and G-quadruplexes. Analyst 141:6503–6506PubMedCrossRefGoogle Scholar
  52. Li D, Shlyahovsky B, Elbaz J, Willner I (2007) Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. J Am Chem Soc 129:5804–5805PubMedCrossRefGoogle Scholar
  53. Li T, Wang E, Dong S (2008) G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chem Commun 31:3654–3656CrossRefGoogle Scholar
  54. Li T, Dong S, Wang E (2009) Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal Chem 81:2144–2149PubMedCrossRefGoogle Scholar
  55. Li T, Wang E, Dong S (2010) Parallel G-quadruplex-specific fluorescent probe for monitoring DNA structural changes and label-free detection of potassium ion. Anal Chem 82:7576–7580PubMedCrossRefGoogle Scholar
  56. Li HB, Wu ZS, Qiu LP, Liu JW, Wang C, Shen GL, Yu RQ (2013) Ultrasensitive label-free amplified colorimetric detection of p53 based on G-quadruplex MBzymes. Biosens Bioelectron 50:180–185PubMedCrossRefGoogle Scholar
  57. Li W, Jiang W, Wang L (2016) Self-locked aptamer probe mediated cascade amplification strategy for highly sensitive and selective detection of protein and small molecule. Anal Chim Acta 940:1–7PubMedCrossRefGoogle Scholar
  58. Lin S, Lu L, Kang TS, Mergny JL, Leung CH, Ma DL (2016a) Interaction of an iridium(III) complex with G-Quadruplex DNA and its application in luminescent switch-on detection of Siglec-5. Anal Chem 88:10290–10295CrossRefGoogle Scholar
  59. Lin X, Leung KH, Lin L, Lin L, Lin S, Leung CH, Ma DL, Lin JM (2016b) Determination of cell metabolite VEGF(1)(6)(5) and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe. Biosens Bioelectron 79:41–47PubMedCrossRefGoogle Scholar
  60. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu Y, Ye M, Ge Q, Qu X, Guo Q, Hu X, Sun Q (2016) Ratiometric quantum dot-ligand system made by phase transfer for visual detection of double-stranded DNA and single-nucleotide polymorphism. Anal Chem 88:1768–1774PubMedCrossRefGoogle Scholar
  62. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang B (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 37:1740–1741CrossRefGoogle Scholar
  63. Lyu Y, Chen G, Shangguan D, Zhang L, Wan S, Wu Y, Zhang H, Duan L, Liu C, You M, Wang J, Tan W (2016) Generating cell targeting Aptamers for Nanotheranostics using cell-SELEX. Theranostics 6:1440–1452PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ma D, Che C, Yan S (2009) Platinum(II) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA. J Am Chem Soc 131:1835–1846PubMedCrossRefGoogle Scholar
  65. Ma DL, He HZ, Leung KH, Zhong HJ, Chan DS, Leung CH (2013) Label-free luminescent oligonucleotide-based probes. Chem Soc Rev 42:3427–3440PubMedCrossRefGoogle Scholar
  66. Ma F, Yang Y, Zhang CY (2014) Ultrasensitive detection of transcription factors using transcription-mediated isothermally exponential amplification-induced Chemiluminescence. Anal Chem 86:6006–6011PubMedCrossRefGoogle Scholar
  67. Maiti S, Chaudhury NK, Chowdhury S (2003) Hoechst 33258 binds to G-quadruplex in the promoter region of human c-myc. Biochem Biophys Res Commun 310:505–512PubMedCrossRefGoogle Scholar
  68. Manet I, Manoli F, Zambelli B, Andreano G, Masi A, Cellai L, Monti S (2011a) Affinity of the anthracycline antitumor drugs doxorubicin and Sabarubicin for human telomeric G-quadruplex structures. Phys Chem Chem Phys 13:540–551PubMedCrossRefGoogle Scholar
  69. Manet I, Manoli F, Zambelli B, Andreano G, Masi A, Cellai L, Ottani S, Marconi G, Monti S (2011b) Complexes of the antitumoral drugs doxorubicin and Sabarubicin with telomeric G-quadruplex in basket conformation: ground and excited state properties. Photochem Photobiol Sci 10:1326–1337PubMedCrossRefGoogle Scholar
  70. Mergny JL, Lacroix L, Teulade-Fichou MP, Hounsou C, Guittat L, Hoarau M, Arimondo PB, Vigneron JP, Lehn JM, Riou JF, Garestier T, Helene C (2001) Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc Natl Acad Sci U S A 98:3062–3067PubMedPubMedCentralCrossRefGoogle Scholar
  71. Min X, Zhuang Y, Zhang Z, Jia Y, Hakeem A, Zheng F, Cheng Y, Tang BZ, Lou X, Xia F (2015) Lab in a tube: sensitive detection of MicroRNAs in urine samples from bladder cancer patients using a single-label DNA probe with AIEgens. ACS Appl Mater Interfaces 7:16813–16818PubMedCrossRefGoogle Scholar
  72. Monchaud D, Allain C, Teulade-Fichou MP (2006) Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorg Med Chem Lett 16:4842–4845PubMedCrossRefGoogle Scholar
  73. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63PubMedPubMedCentralCrossRefGoogle Scholar
  74. Paramasivan S, Bolton PH (2008) Mix and measure fluorescence screening for selective quadruplex binders. Nucleic Acids Res 36:e106PubMedPubMedCentralCrossRefGoogle Scholar
  75. Patel DJ, Phan AT, Kuryavyi V (2007) Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics Nucleic Acids Res 35:7429–7455Google Scholar
  76. Pei RJ, Matamoros E, Liu MH, Stefanovic D, Stojanovic MN (2010) Training a molecular automaton to play a game. Nat Nanotechnol 5:773–777PubMedCrossRefGoogle Scholar
  77. Pelossof G, Tel-Vered R, Willner I (2012) Amplified surface Plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and Hemin/G-Quadruplex as a label. Anal Chem 84:3703–3709PubMedCrossRefGoogle Scholar
  78. Pronina IV, Loginov VI, Burdennyy AM, Fridman MV, Senchenko VN, Kazubskaya TP, Kushlinskii NE, Dmitriev AA, Braga EA (2017) DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression. Gene 604:1–8PubMedCrossRefGoogle Scholar
  79. Quach QH, Jung J, Kim H, Chung BH (2013) A simple, fast and highly sensitive assay for the detection of telomerase activity. Chem Commun 49:6596–6598CrossRefGoogle Scholar
  80. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  81. Schneeberger C, Speiser P, Kury F, Zeillinger R (1995) Quantitative detection of reverse transcriptase-Pcr products by means of a novel and sensitive DNA stain. PCR Methods Appl 4:234–238PubMedCrossRefGoogle Scholar
  82. Shi S, Geng X, Zhao J, Yao T, Wang C, Yang D, Zheng L, Ji L (2010) Interaction of [Ru(bpy)(2)(dppz)](2+) with human telomeric DNA: preferential binding to G-quadruplexes over i-motif. Biochimie 92:370–377PubMedCrossRefGoogle Scholar
  83. Shi H, Li D, Xu F, He X, Wang K, Ye X, Tang J, He C (2014) A label-free activatable aptamer probe for colorimetric detection of cancer cells based on binding-triggered in situ catalysis of split DNAzyme. Analyst 139:4181–4184PubMedCrossRefGoogle Scholar
  84. Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, Tatsumi T, Ishida H, Noda T, Nagano H, Doki Y, Mori M, Hayashi N (2010) The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol 52:698–704PubMedCrossRefGoogle Scholar
  85. Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29:5346–5358PubMedCrossRefGoogle Scholar
  86. Su H, Meng X, Guo Q, Tan Y, Cai Q, Qin H, Meng X (2014) Label-free DNAsensor with PCR-like sensitivity based on background reduction and target-triggered polymerization amplification. Biosens Bioelectron 52:417–421PubMedCrossRefGoogle Scholar
  87. Sun D, Thompson B, Cathers BE, Salazar M, Kerwin SM, Trent JO, Jenkins TC, Neidle S, Hurley LH (1997) Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem 40:2113–2116PubMedCrossRefGoogle Scholar
  88. Sun H, Tang Y, Xiang J, Xu G, Zhang Y, Zhang H, Xu L (2006) Spectroscopic studies of the interaction between quercetin and G-quadruplex DNA. Bioorg Med Chem Lett 16:3586–3589PubMedCrossRefGoogle Scholar
  89. Sun J, Jiang W, Zhu J, Li W, Wang L (2015a) Label-free fluorescence dual-amplified detection of adenosine based on exonuclease III-assisted DNA cycling and hybridization chain reaction. Biosens Bioelectron 70:15–20PubMedCrossRefGoogle Scholar
  90. Sun N, Wang J, Ji LY, Hong SN, Dong JJ, Guo YH, Zhang KC, Pei RJ (2015b) A cellular compatible chitosan nanoparticle surface for isolation and in situ culture of rare number CTCs. Small 11:5444–5451PubMedCrossRefGoogle Scholar
  91. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedCrossRefGoogle Scholar
  92. Tan J, Ou T, Hou J, Lu Y, Huang S, Luo H, Wu J, Huang Z, Wong K, Gu L (2009) Isaindigotone derivatives: a new class of highly selective ligands for telomeric G-quadruplex DNA. J Med Chem 52:2825–2835PubMedCrossRefGoogle Scholar
  93. Tan W, Donovan MJ, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113:2842–2862PubMedPubMedCentralCrossRefGoogle Scholar
  94. Tang R, Yang C, Ma X, Wang Y, Luo D, Huang C, Xu Z, Liu P, Yang L (2016) MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer. Oncotarget 7:5972–5984PubMedPubMedCentralCrossRefGoogle Scholar
  95. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang QQ, Bos PD, Gerald WL, Massague J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–U143PubMedPubMedCentralCrossRefGoogle Scholar
  96. Teulade-Fichou MP, Carrasco C, Guittat L, Bailly C, Alberti P, Mergny JL, David A, Lehn JM, Wilson WD (2003) Selective recognition of G-quadruplex telomeric DNA by a bis(quinacridine) macrocycle. J Am Chem Soc 125:4732–4740PubMedCrossRefGoogle Scholar
  97. Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882PubMedCrossRefGoogle Scholar
  98. Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 5:505–517PubMedCrossRefGoogle Scholar
  99. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308PubMedCrossRefGoogle Scholar
  100. Vogiatzi F, Brandt DT, Schneikert J, Fuchs J, Grikscheit K, Wanzel M, Pavlakis E, Charles JP, Timofeev O, Nist A, Mernberger M, Kantelhardt EJ, Siebolts U, Bartel F, Jacob R, Rath A, Moll R, Grosse R, Stiewe T (2016) Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum UDPase ENTPD5. Proc Natl Acad Sci U S A 113:E8433–E8442PubMedPubMedCentralCrossRefGoogle Scholar
  101. Walker GT, Little MC, Nadeau JG, Shank DD (1992) Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci U S A 89:392–396PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wang XP, Yin BC, Wang P, Ye BC (2013) Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplex DNAzyme. Biosens Bioelectron 42:131–135PubMedCrossRefGoogle Scholar
  103. Wang H, Cheng H, Wang J, Xu L, Chen H, Pei R (2016a) Selection and characterization of DNA aptamers for the development of light-up biosensor to detect cd(II). Talanta 154:498–503PubMedCrossRefGoogle Scholar
  104. Wang K, Zhang R, Sun N, Li X, Wang J, Cao Y, Pei R (2016b) Near-infrared light-driven Photoelectrochemical Aptasensor based on the Upconversion nanoparticles and TiO2/CdTe Heterostructure for detection of cancer cells. ACS Appl Mater Interfaces 8:25834–25839PubMedCrossRefGoogle Scholar
  105. Wang Q, Yin BC, Ye BC (2016c) A novel polydopamine-based chemiluminescence resonance energy transfer method for microRNA detection coupling duplex-specific nuclease-aided target recycling strategy. Biosens Bioelectron 80:366–372PubMedCrossRefGoogle Scholar
  106. Wang R, Wang L, Zhao H, Jiang W (2016d) A split recognition mode combined with cascade signal amplification strategy for highly specific, sensitive detection of microRNA. Biosens Bioelectron 86:834–839PubMedCrossRefGoogle Scholar
  107. Wang Z, Zhao J, Dai Z (2016e) A label-free fluorescent adenosine triphosphate biosensor via overhanging aptamer-triggered enzyme protection and target recycling amplification. Analyst 141:4006–4009PubMedCrossRefGoogle Scholar
  108. Wei C, Han G, Jia G, Zhou J, Li C (2008) Study on the interaction of porphyrin with G-quadruplex DNAs. Biophys Chem 137:19–23PubMedCrossRefGoogle Scholar
  109. Wei Y, Zhou W, Liu J, Chai Y, Xiang Y, Yuan R (2015) Label-free and homogeneous aptamer proximity binding assay for fluorescent detection of protein biomarkers in human serum. Talanta 141:230–234PubMedCrossRefGoogle Scholar
  110. Westermark B, Heldin CH, Nister M (1995) Platelet-derived growth factor in human glioma. Glia 15:257–263PubMedCrossRefGoogle Scholar
  111. Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW (1997) Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 11:2801–2809PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wu S, Wang L, Zhang N, Liu Y, Zheng W, Chang A, Wang F, Li S, Shangguan D (2016) A Bis(methylpiperazinylstyryl)phenanthroline as a fluorescent ligand for G-Quadruplexes. Chemistry 22:6037–6047PubMedCrossRefGoogle Scholar
  113. Xiao Y, Pavlov V, Gill R, Bourenko T, Willner I (2004) Lighting up biochemiluminescence by the surface self-assembly of DNA-hemin complexes. Chembiochem 5:374–379PubMedCrossRefGoogle Scholar
  114. Xu H, Gao SL, Yang Q, Pan D, Wang LH, Fan CH (2010) Amplified fluorescent recognition of G-Quadruplex folding with a cationic conjugated polymer and DNA Intercalator. ACS Appl Mater Interfaces 2:3211–3216PubMedCrossRefGoogle Scholar
  115. Xu J, Qian J, Li H, Wu ZS, Shen W, Jia L (2016) Intelligent DNA machine for the ultrasensitive colorimetric detection of nucleic acids. Biosens Bioelectron 75:41–47PubMedCrossRefGoogle Scholar
  116. Xu H, Wu D, Li CQ, Lu Z, Liao XY, Huang J, Wu ZS (2017) Label-free colorimetric detection of cancer related gene based on two-step amplification of molecular machine. Biosens Bioelectron 90:314–320PubMedCrossRefGoogle Scholar
  117. Xue Q, Zhang Y, Xu S, Li H, Wang L, Li R, Zhang Y, Yue Q, Gu X, Zhang S, Liu J, Wang H (2015) Magnetic nanoparticles-cooperated fluorescence sensor for sensitive and accurate detection of DNA methyltransferase activity coupled with exonuclease III-assisted target recycling. Analyst 140:7637–7644PubMedCrossRefGoogle Scholar
  118. Yan Y, Shen B, Wang H, Sun X, Cheng W, Zhao H, Ju H, Ding S (2015) A novel and versatile nanomachine for ultrasensitive and specific detection of microRNAs based on molecular beacon initiated strand displacement amplification coupled with catalytic hairpin assembly with DNAzyme formation. Analyst 140:5469–5474PubMedCrossRefGoogle Scholar
  119. Yang Q, Xiang J, Yang S, Zhou Q, Li Q, Tang Y, Xu G (2009) Verification of specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: I. Recognizing mixed G-quadruplex in human telomeres. Chem Commun 9:1103–1105CrossRefGoogle Scholar
  120. Yang KA, Pei R, Stojanovic MN (2016) In vitro selection and amplification protocols for isolation of aptameric sensors for small molecules. Methods 106:58–65PubMedPubMedCentralCrossRefGoogle Scholar
  121. Yin B, Ye B, Tan W, Wang H, Xie C (2009) An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(II). J Am Chem Soc 131:14624–14625PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang H, Zhou L, Zhu Z, Yang C (2016) Recent progress in Aptamer-based functional probes for Bioanalysis and biomedicine. Chemistry 22:9886–9900PubMedCrossRefGoogle Scholar
  123. Zhang K, Wang K, Zhu X, Xu F, Xie M (2017) Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method. Biosens Bioelectron 87:358–364PubMedCrossRefGoogle Scholar
  124. Zhao G, Wang B, Liu Y, Zhang JG, Deng SC, Qin Q, Tian K, Li X, Zhu S, Niu Y, Gong Q, Wang CY (2013) miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP 4K4. Mol Cancer Ther 12:2569–2580PubMedCrossRefGoogle Scholar
  125. Zhao Y, Chen F, Li Q, Wang L, Fan C (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545PubMedCrossRefGoogle Scholar
  126. Zhao W, Li Y, Yang S, Chen Y, Zheng J, Liu C, Qing Z, Li J, Yang R (2016) Target-activated modulation of dual-color and two-photon fluorescence of Graphene quantum dots for in vivo imaging of hydrogen peroxide. Anal Chem 88:4833–4840PubMedCrossRefGoogle Scholar
  127. Zheng J, Yang R, Shi M, Wu C, Fang X, Li Y, Li J, Tan W (2015) Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem Soc Rev 44:3036–3055PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zheng X, Niu L, Wei D, Li X, Zhang S (2016) Label-free detection of microRNA based on coupling multiple isothermal amplification techniques. Sci Rep 6:35982PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhou WJ, Su J, Chai YQ, Yuan R, Xiang Y (2014) Naked eye detection of trace cancer biomarkers based on biobarcode and enzyme-assisted DNA recycling hybrid amplifications. Biosens Bioelectron 53:494–498PubMedCrossRefGoogle Scholar
  130. Zhou L, Shen X, Sun N, Wang K, Zhang Y, Pei R (2015) Label-free fluorescence light-up detection of T4 polynucleotide kinase activity using the split-to-intact G-quadruplex strategy by ligation-triggered and toehold-mediated strand displacement release. Analyst 140:5450–5453PubMedCrossRefGoogle Scholar
  131. Zhou L, Cheng H, Wang JE, Pei RJ (2016) G-Quadruplex DNAzyme biosensor for quantitative detection of T4 polynucleotide kinase activity by using split-to-intact G-Quadruplex DNAzyme conversion. Chinese J Anal Chem 44:13–17CrossRefGoogle Scholar
  132. Zhu X, Xiao Y, Jiang X, Li J, Qin H, Huang H, Zhang Y, He X, Wang K (2016) A ratiometric nanosensor based on conjugated polyelectrolyte-stabilized AgNPs for ultrasensitive fluorescent and colorimetric sensing of melamine. Talanta 151:68–74PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologySchool of Food Science and Technology, Jiangnan UniversityWuxiChina
  2. 2.Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of SciencesSuzhouChina

Personalised recommendations