Advertisement

Microfluidic Paper-Based Analytical Devices for Point-of-Care Diagnosis

  • Zhuan Zhuan Shi
  • Yao Lu
  • Ling YuEmail author
Chapter

Abstract

Point-of-care testing (POCT) shows its significant importance in academic and social affairs (Jansen et al. 1998; Wu et al. 1999). From commercialized products to laboratory prototypes, the creative atmosphere in this research field has maintained its vitality and drawn increasing attention from researchers in related areas. There have been many inventions that have changed the practice of medicine at the point of care in either rural or developed areas, and one prominent candidate for POCT is paper-based microfluidic analytical devices, also called Chip-on-a-Paper, or paper-based POC.

Notes

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 31200700 and 21375108), Science Foundation of Chongqing (cstc2014jcyjA10070), Fundamental Research Funds for the Central Universities (XDJK2015B020, XDJK2016A010 and XDJK2016D001).

References

  1. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934CrossRefPubMedGoogle Scholar
  2. Ali MM, Aguirre SD, Xu Y, Filipe CD, Pelton R, Li Y (2009) Detection of DNA using bioactive paper strips. Chem Commun 43:6640–6642Google Scholar
  3. Alkasir RS, Ornatska M, Andreescu S (2012) Colorimetric paper bioassay for the detection of phenolic compounds. Anal Chem 84(22):9729–9737CrossRefPubMedGoogle Scholar
  4. Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry CS, Chailapakul O (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82(5):1727–1732CrossRefPubMedGoogle Scholar
  5. Atalay YT, Vermeir S, Witters D, Vergauwe N, Verbruggen B, Verboven P, Nicolaï BM, Lammertyn J (2011) Microfluidic analytical systems for food analysis. Trends Food Sci Technol 22(7):386–404CrossRefGoogle Scholar
  6. Bang JH, Lim SH, Park E, Suslick KS (2008) Chemically responsive nanoporous pigments: colorimetric sensor arrays and the identification of aliphatic amines. Langmuir 24(22):13168–13172CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80(9):3387–3392CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cao Y, Zhang Q, Wang C, Zhu Y, Bai G (2007) Preparation of novel immunomagnetic cellulose microspheres via cellulose binding domain-protein A linkage and its use for the isolation of interferon α-2b. J Chromatogr A 1149(2):228–235CrossRefPubMedGoogle Scholar
  9. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095CrossRefPubMedGoogle Scholar
  10. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2014) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41CrossRefPubMedGoogle Scholar
  11. Chen Y, Wang Y, Liu L, Wu X, Xu L, Kuang H, Li A, Xu C (2015) A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams. Nanoscale 7(39):16381–16388CrossRefPubMedGoogle Scholar
  12. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134CrossRefPubMedGoogle Scholar
  13. Craig SJ, Shu A, Xu Y, Foong FC, Nordon R (2007) Chimeric protein for selective cell attachment onto cellulosic substrates. Protein Eng Des Sel 20(5):235–241CrossRefPubMedGoogle Scholar
  14. Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83(4):1300–1306CrossRefPubMedGoogle Scholar
  15. Delaney JL, Doeven EH, Harsant AJ, Hogan CF (2013) Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta 790:56–60CrossRefPubMedGoogle Scholar
  16. Demirel G, Babur E (2014) Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications. Analyst 139(10):2326–2331CrossRefPubMedGoogle Scholar
  17. Deng L, Zhang L, Shang L, Guo S, Wen D, Wang F, Dong S (2009) Electrochemiluminescence detection of NADH and ethanol based on partial sulfonation of sol–gel network with gold nanoparticles. Biosens Bioelectron 24(7):2273–2276CrossRefPubMedGoogle Scholar
  18. Doeven EH, Barbante GJ, Kerr E, Hogan CF, Endler JA, Francis PS (2014) Red–green–blue electrogenerated chemiluminescence utilizing a digital camera as detector. Anal Chem 86(5):2727–2732CrossRefPubMedGoogle Scholar
  19. Dossi N, Toniolo R, Piccin E, Susmel S, Pizzariello A, Bontempelli G (2013) Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanalysis 25(11):2515–2522CrossRefGoogle Scholar
  20. Dossi N, Toniolo R, Terzi F, Impellizzieri F, Bontempelli G (2014) Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices. Electrochim Acta 146:518–524CrossRefGoogle Scholar
  21. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81(14):5821–5826CrossRefPubMedGoogle Scholar
  22. Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1):77–82CrossRefPubMedGoogle Scholar
  23. Evans E, Gabriel EFM, Benavidez TE, Coltro WKT, Garcia CD (2014a) Modification of microfluidic paper-based devices with silica nanoparticles. Analyst 139(21):5560–5567CrossRefPubMedPubMedCentralGoogle Scholar
  24. Evans E, Gabriel EFM, Coltro WKT, Garcia CD (2014b) Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Analyst 139(9):2127–2132CrossRefPubMedPubMedCentralGoogle Scholar
  25. Feng X, Pelton R, Leduc M (2006) Mechanical properties of polyelectrolyte complex films based on polyvinylamine and carboxymethyl cellulose. Ind Eng Chem Res 45(20):6665–6671CrossRefGoogle Scholar
  26. Feng QM, Pan JB, Zhang HR, Xu JJ, Chen HY (2014) Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker. Chem Commun 50(75):10949–10951CrossRefGoogle Scholar
  27. Fenton EM, Mascarenas MR, López GP, Sibbett SS (2008) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1(1):124–129CrossRefGoogle Scholar
  28. Forster RJ, Bertoncello P, Keyes TE (2009) Electrogenerated chemiluminescence. Annu Rev Anal Chem 2:359–385CrossRefGoogle Scholar
  29. Free AH, Adams EC, Kercher ML, Free HM, Coo MH (1957) Simple specific test for urine glucose. Clin Chem 3(3):163–168PubMedGoogle Scholar
  30. Fu E, Kauffman P, Lutz B, Yager P (2010) Chemical signal amplification in two-dimensional paper networks. Sens Actuators B 149(1):325–328CrossRefGoogle Scholar
  31. Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61:907–914CrossRefGoogle Scholar
  32. Gabriel EF, Garcia PT, Cardoso TM, Lopes FM, Martins FT, Coltro WK (2016) Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices. Analyst 141:4749–4756CrossRefPubMedGoogle Scholar
  33. Ge L, Yu J, Ge S, Yan M (2014) Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal Bioanal Chem 406(23):5613–5630CrossRefPubMedGoogle Scholar
  34. Gerbers R, Foellscher W, Chen H, Anagnostopoulos C, Faghri M (2014) A new paper-based platform technology for point-of-care diagnostics. Lab Chip 14(20):4042–4049CrossRefPubMedGoogle Scholar
  35. Gomes HI, Sales MGF (2015) Development of paper-based color test-strip for drug detection in aquatic environment: application to oxytetracycline. Biosens Bioelectron 65:54–61CrossRefPubMedGoogle Scholar
  36. Jansen RT, Blaton V, Burnett D, Huisman W, Queraltó JM, Zérah S, Allman B (1998) Additional essential criteria for quality systems of medical laboratories. Clin Chem Lab Med 36(4):249–252CrossRefPubMedGoogle Scholar
  37. Jayawardane BM, Wei S, McKelvie ID, Kolev SD (2014) Microfluidic paper-based analytical device for the determination of nitrite and nitrate. Anal Chem 86(15):7274–7279CrossRefPubMedGoogle Scholar
  38. Li X, Liu X (2014) Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluid Nanofluid 16(5):819–827CrossRefGoogle Scholar
  39. Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B Biointerfaces 76(2):564–570CrossRefPubMedGoogle Scholar
  40. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6(1):011301CrossRefPubMedCentralGoogle Scholar
  41. Li W, Li L, Li M, Yu J, Ge S, Yan M, Song X (2013) Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold–chitosan. Chem Commun 49(83):9540–9542CrossRefGoogle Scholar
  42. Li L, Ma C, Kong Q, Li W, Zhang Y, Ge S, Yan M, Yu J (2014a) A 3D origami electrochemical immunodevice based on a Au@ Pd alloy nanoparticle-paper electrode for the detection of carcinoembryonic antigen. J Mater Chem B 2(38):6669–6674CrossRefGoogle Scholar
  43. Li L, Xu J, Zheng X, Ma C, Song X, Ge S, Yu J, Yan M (2014b) Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor. Biosens Bioelectron 61:76–82CrossRefPubMedGoogle Scholar
  44. Liana DD, Raguse B, Wieczorek L, Baxter GR, Chuah K, Gooding JJ, Chow E (2013) Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors. RSC Adv 3(23):8683–8691CrossRefGoogle Scholar
  45. Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133(44):17564–17566CrossRefPubMedGoogle Scholar
  46. Liu F, Ge S, Yu J, Yan M, Song X (2014) Electrochemical device based on a Pt nanosphere-paper working electrode for in situ and real-time determination of the flux of H2O2 releasing from SK-BR-3 cancer cells. Chem Commun 50(71):10315–10318CrossRefGoogle Scholar
  47. Lopez-Ruiz N, Curto VF, Erenas MM, Benito-Lopez F, Diamond D, Palma AJ, Capitan-Vallvey LF (2014) Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal Chem 86(19):9554–9562CrossRefPubMedGoogle Scholar
  48. Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30(9):1497–1500CrossRefPubMedGoogle Scholar
  49. Lu J, Ge S, Ge L, Yan M, Yu J (2012) Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta 80:334–341CrossRefGoogle Scholar
  50. Ma S, Tang Y, Liu J, Wu J (2014) Visible paper chip immunoassay for rapid determination of bacteria in water distribution system. Talanta 120:135–140CrossRefPubMedGoogle Scholar
  51. Ma C, Li W, Kong Q, Yang H, Bian Z, Song X, Yu J, Yan M (2015) 3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy. Biosens Bioelectron 63:7–13CrossRefPubMedGoogle Scholar
  52. Mabey D, Peeling RW, Ustianowski A, Perkins MD (2004) Tropical infectious diseases: diagnostics for the developing world. Nat Rev Microbiol 2(3):231–240CrossRefPubMedGoogle Scholar
  53. Maejima K, Tomikawa S, Suzuki K, Citterio D (2013) Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv 3(24):9258–9263CrossRefGoogle Scholar
  54. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46(8):1318–1320CrossRefGoogle Scholar
  55. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 105(50):19606–19611CrossRefPubMedPubMedCentralGoogle Scholar
  56. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10CrossRefGoogle Scholar
  57. Müller RH, Clegg DL (1949) Automatic paper chromatography. Anal Chem 21(9):1123–1125CrossRefGoogle Scholar
  58. Nath P, Arun RK, Chanda N (2015) Smart gold nanosensor for easy sensing of lead and copper ions in solution and using paper strips. RSC Adv 5(84):69024–69031CrossRefGoogle Scholar
  59. Nguyen TH, Fraiwan A, Choi S (2014) Paper-based batteries: a review. Biosens Bioelectron 54:640–649CrossRefPubMedGoogle Scholar
  60. Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10(4):477–483CrossRefPubMedGoogle Scholar
  61. Nie J, Liang Y, Zhang Y, Le S, Li D, Zhang S (2013) One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst 138(2):671–676CrossRefPubMedGoogle Scholar
  62. Noor MO, Krull UJ (2014) Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal Chem 86(20):10331–10339CrossRefPubMedGoogle Scholar
  63. Nurak T, Praphairaksit N, Chailapakul O (2013) Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water. Talanta 114:291–296CrossRefPubMedGoogle Scholar
  64. Olkkonen J, Lehtinen K, Erho T (2010) Flexographically printed fluidic structures in paper. Anal Chem 82(24):10246–10250CrossRefPubMedGoogle Scholar
  65. Ornatska M, Sharpe E, Andreescu D, Andreescu S (2011) Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem 83(11):4273–4280CrossRefPubMedGoogle Scholar
  66. Parolo C, Merkoçi A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42(2):450–457CrossRefPubMedGoogle Scholar
  67. Petryayeva E, Algar WR (2015) Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles. RSC Adv 5(28):22256–22282CrossRefGoogle Scholar
  68. Renault C, Li X, Fosdick SE, Crooks RM (2013) Hollow-channel paper analytical devices. Anal Chem 85(16):7976–7979CrossRefPubMedGoogle Scholar
  69. Renault C, Koehne J, Ricco AJ, Crooks RM (2014) Three-dimensional wax patterning of paper fluidic devices. Langmuir 30(23):7030–7036CrossRefPubMedGoogle Scholar
  70. Richter MM (2004) Electrochemiluminescence (ecl). Chem Rev 104(6):3003–3036CrossRefPubMedGoogle Scholar
  71. Rosa AM, Louro AF, Martins SA, Inácio J, Azevedo AM, Prazeres DMF (2014) Capture and detection of DNA hybrids on paper via the anchoring of antibodies with fusions of carbohydrate binding modules and ZZ-domains. Anal Chem 86(9):4340–4347CrossRefPubMedGoogle Scholar
  72. Saito T, Isogai A (2007) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46(3):773–780CrossRefGoogle Scholar
  73. Santhiago M, Kubota LT (2013) A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sens Actuators B 177:224–230CrossRefGoogle Scholar
  74. Santhiago M, Henry CS, Kubota LT (2014) Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. Electrochim Acta 130:771–777CrossRefGoogle Scholar
  75. Scida K, Li B, Ellington AD, Crooks RM (2013) DNA detection using origami paper analytical devices. Anal Chem 85(20):9713–9720CrossRefPubMedGoogle Scholar
  76. Shi Z, Wu X, Gao L, Tian Y, Yu L (2014) Electrodes/paper sandwich devices for in situ sensing of hydrogen peroxide secretion from cells growing in gels-in-paper 3-dimensional matrix. Anal Methods 6(12):4446–4454CrossRefGoogle Scholar
  77. Shi Z, Tian Y, Wu X, Li C, Yu L (2015) A one-piece lateral flow impedimetric test strip for label-free clenbuterol detection. Anal Methods 7(12):4957–4964CrossRefGoogle Scholar
  78. Songjaroen T, Dungchai W, Chailapakul O, Laiwattanapaisal W (2011) Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta 85(5):2587–2593CrossRefPubMedGoogle Scholar
  79. Spicar-Mihalic P, Toley B, Houghtaling J, Liang T, Yager P, Fu E (2013) CO2 laser cutting and ablative etching for the fabrication of paper-based devices. J Micromech Microeng 23(6):067003CrossRefGoogle Scholar
  80. Su S, Nutiu R, Filipe CD, Li Y, Pelton R (2007) Adsorption and covalent coupling of ATP-binding DNA aptamers onto cellulose. Langmuir 23(3):1300–1302CrossRefPubMedGoogle Scholar
  81. Su M, Ge L, Kong Q, Zheng X, Ge S, Li N, Yu J, Yan M (2015) Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells. Biosens Bioelectron 63:232–239CrossRefPubMedGoogle Scholar
  82. Sun J, Xianyu Y, Jiang X (2014) Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem Soc Rev 43(17):6239–6253CrossRefPubMedGoogle Scholar
  83. Thuo MM, Martinez RV, Lan WJ, Liu X, Barber J, Atkinson MB, Bandarage D, Bloch JF, Whitesides GM (2014) Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem Mater 26(14):4230–4237CrossRefGoogle Scholar
  84. Tobjörk D, Österbacka R (2011) Paper electronics. Adv Mater 23(17):1935–1961CrossRefPubMedGoogle Scholar
  85. Tolba M, Brovko LY, Minikh O, Griffiths MW (2008) Engineering of bacteriophages displaying affinity tags on its head for biosensor applications. NSTI Nanotechnol 2:449–452Google Scholar
  86. Wang CC, Hennek JW, Ainla A, Kumar AA, Lan WJ, Im J, Smith BS, Zhao M, Whitesides GM (2016) A paper-based “pop-up” electrochemical device for analysis of beta-hydroxybutyrate. Anal Chem 88(12):6326–6333CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wu AH, Apple FS, Gibler WB, Jesse RL, Warshaw MM, Valdes R (1999) National Academy of Clinical Biochemistry Standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery diseases. Clin Chem 45(7):1104–1121PubMedGoogle Scholar
  88. Yamada K, Takaki S, Komuro N, Suzuki K, Citterio D (2014) An antibody-free microfluidic paper-based analytical device for the determination of tear fluid lactoferrin by fluorescence sensitization of Tb3+. Analyst 139(7):1637–1643Google Scholar
  89. Yang J, Nam YG, Lee SK, Kim CS, Koo YM, Chang WJ, Gunasekaran S (2014) Paper-fluidic electrochemical biosensing platform with enzyme paper and enzymeless electrodes. Sens Actuators B 203:44–53CrossRefGoogle Scholar
  90. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251CrossRefPubMedGoogle Scholar
  91. Yu J, Ge L, Huang J, Wang S, Ge S (2011a) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11(7):1286–1291CrossRefPubMedGoogle Scholar
  92. Yu J, Wang S, Ge L, Ge S (2011b) A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron 26(7):3284–3289CrossRefPubMedGoogle Scholar
  93. Yu L, Shi Z, Fang C, Zhang Y, Liu Y, Li C (2015) Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens Bioelectron 69:307–315CrossRefPubMedGoogle Scholar
  94. Zhang M, Ge L, Ge S, Yan M, Yu J, Huang J, Liu S (2013) Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosens Bioelectron 41:544–550CrossRefPubMedGoogle Scholar
  95. Zhang Y, Zuo P, Ye BC (2015) A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens Bioelectron 68:14–19CrossRefPubMedGoogle Scholar
  96. Zhao W, Ali MM, Aguirre SD, Brook MA, Li Y (2008) Paper-based bioassays using gold nanoparticle colorimetric probes. Anal Chem 80(22):8431–8437CrossRefPubMedGoogle Scholar
  97. Zhou F, Noor MO, Krull UJ (2014) Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors. Anal Chem 86(5):2719–2726CrossRefPubMedGoogle Scholar
  98. Zhu Y, Xu X, Brault ND, Keefe AJ, Han X, Deng Y, Xu J, Yu Q, Jiang S (2014a) Cellulose paper sensors modified with zwitterionic poly (carboxybetaine) for sensing and detection in complex media. Anal Chem 86(6):2871–2875CrossRefPubMedGoogle Scholar
  99. Zhu WJ, Feng DQ, Chen M, Chen ZD, Zhu R, Fang HL, Wang W (2014b) Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper strip. Sens Actuators B 190:414–418CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Faculty of Materials and Energy, Institute for Clean Energy and Advanced MaterialsSouthwest UniversityChongqingChina

Personalised recommendations