Advertisement

Oligopeptides for Cancer and Other Biomedical Sensing Applications

  • Xiaokang Ding
  • Kun-Lin YangEmail author
Chapter

Abstract

Sensitive and specific detection of biomarkers is a constant demand in biomedical sensing applications. Over decades, the detection of biomarkers (e.g. AFP, CEA, and PSA, etc.) in the clinical sites and research institutes mainly relied on immunoassays, where the antibodies were employed as molecular recognizing components. However, the antibodies are susceptible to temperature, and the storage of the antibodies is challenging especially in resource-limited regions. Besides, the production of antibodies is tedious, and the batch-to-batch variation is also a concern. To overcome these limitations, oligopeptides are promising candidates to replace antibodies as molecular receptors due to their abilities in molecular recognizing and the flexibility in sequence designing. In this chapter, we first introduced the screening approaches to obtain the oligopeptide sequence possessing the highest binding affinity to the target molecules. Next, we briefly reviewed the recent applications of oligopeptides for in vitro detection of protein biomarkers, tumor cells, and proteases, respectively. These advances of oligopeptides for biomedical sensing applications shed light on the next generation point-of-care biomedical sensors technologies for cancer diagnosis.

Abbreviations

5-FAM

5-Carboxyfluorescein

AFP

Alpha-fetoprotein

BHQ-1

Black hole quencher-1

BBI

Bowman–Birk inhibitor

CEA

Carcinoembryonic antigen

CT

Computed tomography

CTC

Circulating tumor cells

ctDNA

Circulating tumor DNA

EGFR

Epidermal growth factor receptor

ELISA

Enzyme-linked immunosorbent assay

EphA2

Ephrin type-A receptor 2

EphB4

Ephrin type-B receptor 4

EpCAM

Epithelial cell adhesion molecule

Fmoc

N-Fluorenyl-9-methoxycarbonyl

HER2

Human epidermal growth factor receptor 2

HIV-1

Human immunodeficiency virus type 1

HPS

Hexaphenylsilole

hCG

Human chorionic gonadotropin

IL-6

Interleukin 6

MRI

Magnetic resonance imaging

PET

Positron emission tomography

PSA

Prostate-specific antigen

QCM

Quartz crystal microbalance

RT-PCR

Reverse transcription polymerase chain reaction

RIV

Restriction of intramolecular vibration

RIR

Restriction of intramolecular rotation

SPR

Surface plasmon resonance

TAMRA

Carboxytetramethylrhodamine

TPE

Tetraphenylethene

Notes

Acknowledgments

We would like to thank http://muchong.com/ in gathering the relevant literature which are not accessible from the author’s affiliation.

References

  1. Acevedo HF, Tong JY, Hartsock RJ (1995) Human chorionic gonadotropin-beta subunit gene expression in cultured human fetal and cancer cells of different types and origins. Cancer 76:1467–1475PubMedCrossRefGoogle Scholar
  2. Aggarwal S, Janssen S, Wadkins RM, Harden JL, Denmeade SR (2005) A combinatorial approach to the selective capture of circulating malignant epithelial cells by peptide ligands. Biomaterials 26:6077–6086PubMedCrossRefGoogle Scholar
  3. Aili D, Stevens MM (2010) Bioresponsive peptide-inorganic hybrid nanomaterials. Chem Soc Rev 39:3358–3370PubMedCrossRefGoogle Scholar
  4. Aina OH, Liu RW, Sutcliffe JL, Marik J, Pan CX, Lam KS (2007) From combinatorial chemistry to cancer-targeting peptides. Mol Pharm 4:631–651PubMedCrossRefGoogle Scholar
  5. Aina OH, Marik J, Liu R, Lau DH, Lam KS (2005) Identification of novel targeting peptides for human ovarian cancer cells using “one-bead one-compound” combinatorial libraries. Mol Cancer Ther 4:806–813PubMedCrossRefGoogle Scholar
  6. Alino VJ, Yang KL (2011) Using liquid crystals as a readout system in urinary albumin assays. Analyst 136:3307–3313PubMedCrossRefGoogle Scholar
  7. Andersson O, Nikkinen H, Kanmert D, Enander K (2009) A multiple-ligand approach to extending the dynamic range of analyte quantification in protein microarrays. Biosens Bioelectron 24:2458–2464PubMedCrossRefGoogle Scholar
  8. Bagshawe KD (1992) Choriocarcinoma: a model for tumor markers. Acta Oncol 31:99–106PubMedCrossRefGoogle Scholar
  9. Bai L, Du Y, Peng J, Liu Y, Wang Y, Yang Y, Wang C (2014) Peptide-based isolation of circulating tumor cells by magnetic nanoparticles. J Mater Chem B 2:4080–4088CrossRefGoogle Scholar
  10. Bi XY, Hartono D, Yang KL (2008) Controlling orientations of immobilized oligopeptides using N-terminal cysteine labels. Langmuir 24:5238–5240PubMedCrossRefGoogle Scholar
  11. Birken S, Kovalevskaya G, O'Connor J (2001) Immunochemical measurement of early pregnancy isoforms of hCG: potential applications to fertility research, prenatal diagnosis, and cancer. Arch Med Res 32:635–643PubMedCrossRefGoogle Scholar
  12. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102PubMedCrossRefGoogle Scholar
  13. Carlton RJ, Hunter JT, Miller DS, Abbasi R, Mushenheim PC, Tan LN, Abbott NL (2013) Chemical and biological sensing using liquid crystals. Liq Cryst Rev 1:29–51PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cerruti M, Jaworski J, Raorane D, Zueger C, Varadarajan J, Carraro C, Lee SW, Maboudian R, Majumdar A (2009) Polymer-oligopeptide composite coating for selective detection of explosives in water. Anal Chem 81:4192–4199PubMedCrossRefGoogle Scholar
  15. Chen P, Selegard R, Aili D, Liedberg B (2013) Peptide functionalized gold nanoparticles for colorimetric detection of matrilysin (MMP-7) activity. Nanoscale 5:8973–8976PubMedCrossRefGoogle Scholar
  16. Cheng Y, Meyers JD, Agnes RS, Doane TL, Kenney ME, Broome A-M, Burda C, Basilion JP (2011) Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery? Small 7:2301–2306PubMedCrossRefGoogle Scholar
  17. Cortese R, Monaci P, Nicosia A, Luzzago A, Felici F, Galfre G, Pessi A, Tramontano A, Sollazzo M (1995) Identification of biologically active peptides using random libraries displayed on phage. Curr Opin Biotechnol 6:73–80PubMedCrossRefGoogle Scholar
  18. Cwirla SE, Peters EA, Barrett RW, Dower WJ (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci U S A 87:6378–6382PubMedPubMedCentralCrossRefGoogle Scholar
  19. Derda R, Tang SKY, Li SC, Ng S, Matochko W, Jafari MR (2011) Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 16:1776–1803PubMedCrossRefGoogle Scholar
  20. Derda R, Tang SKY, Whitesides GM (2010) Uniform amplification of phage with different growth characteristics in individual compartments consisting of monodisperse droplets. Angew Chem Int Ed 49:5301–5304CrossRefGoogle Scholar
  21. Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249:404–406PubMedCrossRefGoogle Scholar
  22. Ding D, Li K, Liu B, Tang BZ (2013) Bioprobes based on AIE fluorogens. Acc Chem Res 46:2441–2453PubMedCrossRefGoogle Scholar
  23. Ding X, Ge D, Yang K-L (2014) Colorimetric protease assay by using gold nanoparticles and oligopeptides. Sensors Actuators B Chem 201:234–239CrossRefGoogle Scholar
  24. Ding XK, Yang KL (2013a) Development of an oligopeptide functionalized surface plasmon resonance biosensor for online detection of glyphosate. Anal Chem 85:5727–5733PubMedCrossRefGoogle Scholar
  25. Ding XK, Yang KL (2013b) Antibody-free detection of human chorionic gonadotropin by use of liquid crystals. Anal Chem 85:10710–10716PubMedCrossRefGoogle Scholar
  26. Dover JE, Hwang GM, Mullen EH, Prorok BC, Suh SJ (2009) Recent advances in peptide probe-based biosensors for detection of infectious agents. J Microbiol Methods 78:10–19PubMedCrossRefGoogle Scholar
  27. Enander K, Choulier L, Olsson AL, Yushchenko DA, Kanmert D, Klymchenko AS, Demchenko AP, Mély Y, Altschuh D (2008) A peptide-based, ratiometric biosensor construct for direct fluorescence detection of a protein analyte. Bioconjug Chem 19:1864–1870PubMedCrossRefGoogle Scholar
  28. Füzéry AK, Levin J, Chan MM, Chan DW (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 10:13PubMedPubMedCentralCrossRefGoogle Scholar
  29. Felici F, Castagnoli L, Musacchio A, Jappelli R, Cesareni G (1991) Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J Mol Biol 222:301–310PubMedCrossRefGoogle Scholar
  30. Fields C, Mallee P, Muzard J, Lee GU (2012) Isolation of Bowman-Birk-inhibitor from soybean extracts using novel peptide probes and high gradient magnetic separation. Food Chem 134:1831–1838PubMedCrossRefGoogle Scholar
  31. Goldman ER, Pazirandeh MP, Charles PT, Balighian ED, Anderson GP (2002) Selection of phage displayed peptides for the detection of 2,4,6-trinitrotoluene in seawater. Anal Chim Acta 457:13–19CrossRefGoogle Scholar
  32. Gray BP, Brown KC (2014) Combinatorial peptide libraries: mining for cell-binding peptides. Chem Rev 114:1020–1081PubMedCrossRefGoogle Scholar
  33. Guarise C, Pasquato L, De Filippis V, Scrimin P (2006) Gold nanoparticles-based protease assay. Proc Natl Acad Sci U S A 103:3978–3982PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gupta VK, Skaife JJ, Dubrovsky TB, Abbott NL (1998) Optical amplification of ligand-receptor binding using liquid crystals. Science 279:2077–2080PubMedCrossRefGoogle Scholar
  35. Haarburger D, Pillay TS (2011) Historical perspectives in diagnostic clinical pathology: development of the pregnancy test. J Clin Pathol 64:546–548PubMedCrossRefGoogle Scholar
  36. Haas W, Adams J, Flannery JB (1970) AC-field-induced Grandjean plane texture in mixtures of room-temperature nematics and cholesterics. Phys Rev Lett 24:577–578CrossRefGoogle Scholar
  37. Harris TJ, von Maltzahn G, Derfus AM, Ruoslahti E, Bhatia SN (2006) Proteolytic actuation of nanoparticle self-assembly. Angew Chem Int Ed 45:3161–3165CrossRefGoogle Scholar
  38. Herpoldt K-L, Artzy-Schnirman A, Christofferson AJ, Makarucha AJ, de la Rica R, Yarovsky I, Stevens MM (2015) Designing fluorescent peptide sensors with dual specificity for the detection of HIV-1 protease. Chem Mater 27:7187–7195PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hopp TP, Prickett KS, Price VL, Libby RT, March CJ, Cerretti DP, Urdal DL, Conlon PJ (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Nat Biotechnol 6:1204–1210CrossRefGoogle Scholar
  40. Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP (2000) A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15:549–578PubMedCrossRefGoogle Scholar
  41. Jaworski JW, Raorane D, Huh JH, Majumdar A, Lee SW (2008) Evolutionary screening of biomimetic coatings for selective detection of explosives. Langmuir 24:4938–4943PubMedCrossRefGoogle Scholar
  42. Jerome B (1991) Surface effects and anchoring in liquid crystals. Rep Prog Phys 54:391–451CrossRefGoogle Scholar
  43. Jin S, Wan J, Meng L, Huang X, Guo J, Liu L, Wang C (2015) Biodegradation and toxicity of protease/redox/pH stimuli-responsive PEGlated PMAA nanohydrogels for targeting drug delivery. ACS Appl Mater Interfaces 7:19843–19852PubMedCrossRefGoogle Scholar
  44. Kahn FJ (1973) Orientation of liquid crystals by surface coupling agents. Appl Phys Lett 22:386–388CrossRefGoogle Scholar
  45. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  46. Kim GB, Kim YP (2012) Analysis of protease activity using quantum dots and resonance energy transfer. Theranostics 2:127–138PubMedPubMedCentralCrossRefGoogle Scholar
  47. Krishnamoorthy S (2015) Nanostructured sensors for biomedical applications—a current perspective. Curr Opin Biotechnol 34:118–124PubMedCrossRefGoogle Scholar
  48. Krizkova S, Zitka O, Masarik M, Adam V, Stiborova M, Eckschlager T, Chavis GJ, Kizek R (2011) Assays for determination of matrix metalloproteinases and their activity. TrAC Trends Anal Chem 30:1819–1832CrossRefGoogle Scholar
  49. Kuang ZF, Kim SN, Crookes-Goodson WJ, Farmer BL, Naik RR (2010) Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano 4:452–458PubMedCrossRefGoogle Scholar
  50. Kumar SR, Gallazzi FA, Ferdani R, Anderson CJ, Quinn TP, Deutscher SL (2010) In vitro and in vivo evaluation of cu-64-radiolabeled KCCYSL peptides for targeting epidermal growth factor receptor-2 in breast carcinomas. Cancer Biother Radiopharm 25:693–703PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kumar SR, Quinn TP, Deutscher SL (2007) Evaluation of an in-111-radiolabeled peptide as a targeting and imaging agent for ErbB-2 receptor-expressing breast carcinomas. Clin Cancer Res 13:6070–6079PubMedCrossRefGoogle Scholar
  52. Kwok RTK, Leung CWT, Lam JWY, Tang BZ (2015) Biosensing by luminogens with aggregation-induced emission characteristics. Chem Soc Rev 44:4228–4238PubMedCrossRefGoogle Scholar
  53. Lam KS, Lebl M, Krchňák V (1997) The “one-bead-one-compound” combinatorial library method. Chem Rev 97:411–448PubMedCrossRefGoogle Scholar
  54. Lam KS, Liu RW, Miyamoto S, Lehman AL, Tuscano JM (2003) Applications of one-bead one-compound combinatorial libraries and chemical microarrays in signal transduction research. Acc Chem Res 36:370–377PubMedCrossRefGoogle Scholar
  55. Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:82–84PubMedCrossRefGoogle Scholar
  56. Laromaine A, Koh LL, Murugesan M, Ulijn RV, Stevens MM (2007) Protease-triggered dispersion of nanoparticle assemblies. J Am Chem Soc 129:4156–4157PubMedCrossRefGoogle Scholar
  57. Lau D, Guo L, Liu R, Marik J, Lam K (2006) Peptide ligands targeting integrin α3β1 in non-small cell lung cancer. Lung Cancer 52:291–297PubMedCrossRefGoogle Scholar
  58. Lee SS, Lim J, Tan S, Cha J, Yeo SY, Agnew HD, Heath JR (2010) Accurate MALDI-TOF/TOF sequencing of one-bead-one-compound peptide libraries with application to the identification of multiligand protein affinity agents using in situ click chemistry screening. Anal Chem 82:672–679PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lee SW, Mao CB, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895PubMedCrossRefGoogle Scholar
  60. Lefkowitz RB, Marciniak JY, CM H, Schmid-Schonbein GW, Heller MJ (2010) An electrophoretic method for the detection of chymotrypsin and trypsin activity directly in whole blood. Electrophoresis 31:403–410PubMedCrossRefGoogle Scholar
  61. Li H, Li W, Liu F, Wang Z, Li G, Karamanos Y (2016) Detection of tumor invasive biomarker using a peptamer of signal conversion and signal amplification. Anal Chem 88:3662–3668PubMedCrossRefGoogle Scholar
  62. Liu R, Marik J, Lam KS (2002) A novel peptide-based encoding system for “one-bead one-compound” peptidomimetic and small molecule combinatorial libraries. J Am Chem Soc 124:7678–7680PubMedCrossRefGoogle Scholar
  63. Lock LL, Reyes CD, Zhang P, Cui H (2016) Tuning cellular uptake of molecular probes by rational design of their assembly into supramolecular nanoprobes. J Am Chem Soc 138:3533–3540PubMedCrossRefGoogle Scholar
  64. Lockwood NA, Gupta JK, Abbott NL (2008) Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases. Surf Sci Rep 63:255–293CrossRefGoogle Scholar
  65. Lofas S (1995) Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface plasmon resonance. Pure Appl Chem 67:829–834CrossRefGoogle Scholar
  66. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun:1740–1741Google Scholar
  67. McGuire MJ, Samli KN, Chang Y-C, Brown KC (2006) Novel ligands for cancer diagnosis: selection of peptide ligands for identification and isolation of B-cell lymphomas. Exp Hematol 34:443–452PubMedCrossRefGoogle Scholar
  68. Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Tetsuo Uyeda H, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5:581–589PubMedCrossRefGoogle Scholar
  69. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26:5429–5479PubMedCrossRefGoogle Scholar
  70. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154CrossRefGoogle Scholar
  71. Mostert B, Sleijfer S, Foekens JA, Gratama JW (2009) Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treat Rev 35:463–474PubMedCrossRefGoogle Scholar
  72. Mullen LM, Nair SP, Ward JM, Rycroft AN, Henderson B (2006) Phage display in the study of infectious diseases. Trends Microbiol 14:141–147PubMedCrossRefGoogle Scholar
  73. Na YR, Kim SY, Gaublomme JT, Shalek AK, Jorgolli M, Park H, Yang EG (2013) Probing enzymatic activity inside living cells using a nanowire-cell “sandwich” assay. Nano Lett 13:153–158PubMedCrossRefGoogle Scholar
  74. Pan YL, Guo ML, Nie Z, Huang Y, Peng Y, Liu AF, Qing M, Yao SZ (2012) Colorimetric detection of apoptosis based on caspase-3 activity assay using unmodified gold nanoparticles. Chem Commun 48:997–999CrossRefGoogle Scholar
  75. Parmley SF, Smith GP (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305–318PubMedCrossRefGoogle Scholar
  76. Paterlini-Brechot P, Benali NL (2007) Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett 253:180–204PubMedCrossRefGoogle Scholar
  77. Peng L, Liu R, Marik J, Wang X, Takada Y, Lam KS (2006) Combinatorial chemistry identifies high-affinity peptidomimetics against [alpha]4[beta]1 integrin for in vivo tumor imaging. Nat Chem Biol 2:381–389PubMedCrossRefGoogle Scholar
  78. Pillutla RC, Hsiao KC, Beasley JR, Brandt J, Ostergaard S, Hansen PH, Spetzler JC, Danielsen GM, Andersen AS, Brissette RE, Lennick M, Fletcher PW, Blume AJ, Schaffer L, Goldstein NI (2002) Peptides identify the critical hotspots involved in the biological activation of the insulin receptor. J Biol Chem 277:22590–22594PubMedCrossRefGoogle Scholar
  79. Sankaran S, Panigrahi S, Mallik S (2011) Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens Bioelectron 26:3103–3109PubMedCrossRefGoogle Scholar
  80. Scarberry KE, Dickerson EB, McDonald JF, Zhang ZJ (2008) Magnetic nanoparticle-peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J Am Chem Soc 130:10258–10262PubMedCrossRefGoogle Scholar
  81. Schafer A, Pahnke A, Schaffert D, van Weerden WM, de Ridder CMA, Rodl W, Vetter A, Spitzweg C, Kraaij R, Wagner E, Ogris M (2011) Disconnecting the yin and yang relation of epidermal growth factor receptor (EGFR)-mediated delivery: a fully synthetic, EGFR-targeted gene transfer system avoiding receptor activation. Hum Gene Ther 22:1463–1473PubMedPubMedCentralCrossRefGoogle Scholar
  82. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249:386–390PubMedCrossRefGoogle Scholar
  83. Shi H, Kwok RTK, Liu J, Xing B, Tang BZ, Liu B (2012) Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J Am Chem Soc 134:17972–17981PubMedCrossRefGoogle Scholar
  84. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317PubMedCrossRefGoogle Scholar
  85. Smith GP, Scott JK (1993) Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol 217:228–257PubMedCrossRefGoogle Scholar
  86. Takakusagi Y, Kobayashi S, Sugawara F (2005) Camptothecin binds to a synthetic peptide identified by a T7 phage display screen. Bioorg Med Chem Lett 15:4850–4853PubMedCrossRefGoogle Scholar
  87. Tsampalas M, Gridelet V, Berndt S, Foidart JM, Geenen V, d'Hauterive SP (2010) Human chorionic gonadotropin: a hormone with immunological and angiogenic properties. J Reprod Immunol 85:93–98PubMedCrossRefGoogle Scholar
  88. Underwood S, Mulvaney P (1994) Effect of the solution refractive index on the color of gold colloids. Langmuir 10:3427–3430CrossRefGoogle Scholar
  89. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller L, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741PubMedCrossRefGoogle Scholar
  90. Vickers CJ, Gonzalez-Paez GE, Wolan DW (2013) Selective detection of caspase-3 versus caspase-7 using activity-based probes with key unnatural amino acids. ACS Chem Biol 8:1558–1566PubMedCrossRefGoogle Scholar
  91. Vosyka O, Vinothkumar KR, Wolf EV, Brouwer AJ, Liskamp RMJ, Verhelst SHL (2013) Activity-based probes for rhomboid proteases discovered in a mass spectrometry-based assay. Proc Natl Acad Sci U S A 110:2472–2477PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wang M, Zhang G, Zhang D, Zhu D, Tang BZ (2010) Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J Mater Chem 20:1858–1867CrossRefGoogle Scholar
  93. Wang W, Wei Z, Zhang D, Ma H, Wang Z, Bu X, Li M, Geng L, Lausted C, Hood L, Fang Q, Wang H, Hu Z (2014) Rapid screening of peptide probes through in situ single-bead sequencing microarray. Anal Chem 86:11854–11859PubMedCrossRefGoogle Scholar
  94. Wang X, Peng L, Liu R, Gill SS, Lam KS (2005) Partial alloc-deprotection approach for ladder synthesis of “one-bead one-compound” combinatorial libraries. J Comb Chem 7:197–209PubMedCrossRefGoogle Scholar
  95. Wang ZH, Wang WZ, XL B, Wei ZW, Geng LL, Wu Y, Dong CY, Li LQ, Zhang D, Yang S, Wang F, Lausted C, Hood L, Hu Z (2015) Microarray based screening of peptide nano probes for HER2 positive tumor. Anal Chem 87:8367–8372PubMedCrossRefGoogle Scholar
  96. Warren AD, Kwong GA, Wood DK, Lin KY, Bhatia SN (2014) Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc Natl Acad Sci U S A 111:3671–3676PubMedPubMedCentralCrossRefGoogle Scholar
  97. Whaley SR, English DS, EL H, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405:665–668PubMedCrossRefGoogle Scholar
  98. Wong RC, Tse HY (2009) Lateral flow immunoassay. Humana Press, New York, NYCrossRefGoogle Scholar
  99. Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zauner T, Berger-Hoffmann R, Muller K, Hoffmann R, Zuchner T (2011) Highly adaptable and sensitive protease assay based on fluorescence resonance energy transfer. Anal Chem 83:7356–7363PubMedCrossRefGoogle Scholar
  101. Zhang CQ, Zheng L, Nurnberg J, Vacari BM, Zhou JZ, Wang Y (2014) Cleavage of pro-tumor necrosis factor alpha by ADAM metallopeptidase domain 17: a fluorescence-based protease assay cleaves its natural protein substrate. Anal Biochem 445:14–19PubMedCrossRefGoogle Scholar
  102. Zhang P, Cheetham AG, Lock LL, Li Y, Cui H (2015) Activatable nanoprobes for biomolecular detection. Curr Opin Biotechnol 34:171–179PubMedCrossRefGoogle Scholar
  103. Zhao WT, Yao CL, Luo XT, Lin L, Hsing IM (2012) Staining-free gel electrophoresis-based multiplex enzyme assay using DNA and peptide dual-functionalized gold nanoparticles. Electrophoresis 33:1288–1291PubMedCrossRefGoogle Scholar
  104. Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115:10575–10636PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zou Q, Yang K-L (2016) Identification of peptide inhibitors of penicillinase using a phage display library. Anal Biochem 494:4–9PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations