Potential Applications of Antioxidants from Algae in Human Health



Ageing is a very complex process that leads to various physiological changes due to multiple environmental and lifestyle changes. Initially it is harmless as our body is trained to tackle all these small damages, but it does not have the potential to handle these impacts for infinite period. Oxidative stress and production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the major reasons for various age-related disorders such as neurodegenerative disorders, types of cancers and diabetes (Collier et al. 1990; Boynes 1991). Oxidative stress plays a significant function in their pathogenesis, and this may bring about certain changes in the oxidative stress biomarkers such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione, etc. These biomarkers are excellent tool that can be used as an indicator to analyse the pathological or control conditions. Different biomarkers have varied characteristics according to disease state, disease trait and rate of the disease. As per global ageing index, approximately 22% of the total population will be 60+, i.e. 2031 million ( This will have a huge impact on healthcare and needed infrastructure cost (



Corresponding author (MPR) is thankful to the Council of Scientific and Industrial Research, Human Resource Development Group, New Delhi (India), for financial support in the project grant [38 (1412) 16/EMR-II] that made this work possible.


  1. Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant. 1997;100:224–33.CrossRefGoogle Scholar
  2. Aruoma OI. Methodological consideration for characterization for potential antioxidant actions of bioactive components in plants foods. Mutat Res. 2003;532:9–20.CrossRefGoogle Scholar
  3. Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, de Menezes SL. Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radical Bio Med. 2002;32:841–59.CrossRefGoogle Scholar
  4. Ayyagari M, Pande R, Kamtekar S, Gao H, Marx K, Kumar J, Tripathy S, Akkara J, Kaplan D. Molecular assembly of proteins and conjugated polymers: toward development of biosensors. Biotechnol Bioeng. 1995;45:116–21.PubMedCrossRefGoogle Scholar
  5. Baker R, Gunther C. The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption. Trends Food SciTechnol. 2004;15:484–8.CrossRefGoogle Scholar
  6. Barros MP, Pinto E, Colepicolo P, Pedersen M. Astaxanthin and peridinin inhibit oxidative damage in Fe2+−loaded liposomes: scavenging oxyradicals or changing membrane permeability? Biochem Biophys Res Commun. 2001;288:225–32.PubMedCrossRefGoogle Scholar
  7. Becker EW. Microalgae in human and animal nutrition. In: Richmond A, editor. Handbook of microalgal culture. Oxford: Blackwell; 2004. p. 312–51.Google Scholar
  8. Bermejo Román R, Alvárez-Pez JM, Acién Fernández FG, Molina Grima E. Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol. 2002;93(1):73–85.PubMedCrossRefGoogle Scholar
  9. Boynes JW. Role of oxidative stress in development of complication in diabetes. Diabetes. 1991;40:405–11.CrossRefGoogle Scholar
  10. Branen, A.L., Davidson, P.M., Salminen, S. and Thorngate, J. (Eds). (2001). Food additives. CRC Press Boca Raton.Google Scholar
  11. Britton G, Liaaen-Jensen S, Pfander H. Introduction. In: Britton G, Liaaen Jensen S, Pfander H, editors. Carotenoids Isolation and analysis. Basel: Birkhaüser; 1995. p. 13–7.Google Scholar
  12. Butow B, Wynne D, Tel-Or E. Response of catalase activity to environmental stress in the freshwater dinoflagellate Peridinium gatunense. J Phycol. 1994;30:17–22.CrossRefGoogle Scholar
  13. Butow B, Wynne O, Tel-Or E. Antioxidative protection of Peridinium gatunense in Lake Kinneret: seasonal and daily variation. J Phycol. 1997;33:780–6.CrossRefGoogle Scholar
  14. del Campo AJ, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol. 2007;74:1163–74.PubMedCrossRefGoogle Scholar
  15. Chiu HF, Yang SP, Kuo YL, Lai YS, Chou TC. Mechanisms involved in the antiplatelet effect of C-phycocyanin. Br J Nutr. 2006;95(02):435–40.PubMedCrossRefGoogle Scholar
  16. Collier A, Wilson R, Bradley H, Thomson JA, Small M. Free radical activity is type 2 diabetes. Diabet Med. 1990;7:27–30.PubMedCrossRefGoogle Scholar
  17. Csavina JL, Stuart BJ, Riefler RG, Vis ML. Growth optimization of algae for biodiesel production. J Appl Microbiol. 2011;111:312–8.PubMedCrossRefGoogle Scholar
  18. Cysewski GR, Lorenz RT. Industrial production of microalgal cell-mass and secondary products—species of high potential: Haematococcus. In: Richmond A, editor. Handbook of Microalgal culture, biotechnology and applied Phycology. Oxford: Blackwell Science; 2004. p. 281–8.Google Scholar
  19. Chitralekha Nag Dasgupta. Algae as a source of phycocyanin and other industrially important pigments, Algal Biorefinery: An Integrated Approach.2015.Google Scholar
  20. Di Mascio P, Devasagayam TPA, Kaiser S, Sies H. Carotenoids, tocopherols and thiols as biological singlet molecular-oxygen quenchers. Biochem Soc T. 1990;18:1054–6.CrossRefGoogle Scholar
  21. Dixon PS. Biology of the Rhodophyta. Edinburgh: Oliver & Boyd; 1973. p. 285.Google Scholar
  22. Duval B, Shetty K, Thomas WH. Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol. 2000;11:559–66.CrossRefGoogle Scholar
  23. El-Baky HHA, El Baz FK, El-Baroty GS. Enhancement of antioxidant production in Spirulina plantensis under oxidative stress. American-Eurasian J Sci Res. 2007;2(2):170–9.Google Scholar
  24. Eonseon J, Polle JEW, Lee HK, Hyund SM, Chang M. Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. Microb Biotechnol. 2003;13:165–74. 11Google Scholar
  25. Farasat M, Khavari-Nejad R, Nabavi BMS, Namjooyan F. Antioxidant properties of some filamentous green algae (Chaetomorpha Genus). Braz Arch Biol Technol. 2013;56(6):1678–4324.CrossRefGoogle Scholar
  26. Fisch KM, Bohm V, Wrightand AD, Konig GM. Antioxidative meroterpenoids from the brown alga Cystoseira crinita. J Nat Prod. 2003;66l:968–75.CrossRefGoogle Scholar
  27. Foote CS, Chang YC, Denny RW. Chemistry of singlet oxygen.10. Carotenoid quenching parallels biological protection. J Am Chem Soc. 1970;92:5216–420.PubMedCrossRefGoogle Scholar
  28. Frank HA, Cogdell RJ. Carotenoids in photosynthesis. Photochem Photobiol. 1996;63:257–64.PubMedCrossRefGoogle Scholar
  29. Gammone MA, Riccioni G, D’Orazio N. Carotenoids: potential allies of cardiovascular health? Food Nutr Res. 2015;59:26762. doi: 10.3402/fnr.v59.26762.PubMedCrossRefGoogle Scholar
  30. Ganesan P, Noda K, Manabe Y, Ohkubo T, Tanaka Y, Maoka T, Sugawara T, Hirata T. Siphonaxanthin, a marine algal carotenoids from green algae, effectively induces apoptosis in human leukemia (HL-60) cells. Biochim Biophys Acta. 2011;1810:497–503.PubMedCrossRefGoogle Scholar
  31. Giblin FJ. Glutathione: a vital lens antioxidant. J Ocul Pharmacol Ther. 2000;16:121–35.PubMedCrossRefGoogle Scholar
  32. Grossman AR, Bhaya D, Apt KE, Kehoe DM. Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet. 1995;1995(29):231–88.CrossRefGoogle Scholar
  33. Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 2003;21:210–5.PubMedCrossRefGoogle Scholar
  34. Gupta A, Sainis JK. Isolation of C-phycocyanin from Synechococcus sp., (Anacystis nidulansBD1). J Appl Phycol. 2010;22(3):231–3.CrossRefGoogle Scholar
  35. Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol. 2010;22:43–50.CrossRefGoogle Scholar
  36. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Clarendon Press; 1989.Google Scholar
  37. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. New York: Oxford University Press; 1999. p. 936.Google Scholar
  38. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press; 2007. p. 79–350.Google Scholar
  39. Ham YM, Baik JS, Hyun JW, Lee NH. Isolation of a new phlorotannin, fucodiphlorethol G, from a brown alga Ecklonia cava. Bull Kor Chem Soc. 2007;28:1595–7.CrossRefGoogle Scholar
  40. Hameed, A, Shahina M, Line SY, Lai WA, Hsu YH, Liu YC, Young CC. Aquibacter zeaxanthinifaciens gen. nov. sp. nov., a zeaxanthin producing bacterium of the family Flavobacteriaceae isolated from surface sea-water and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter. Int J Syst Evol Microbiol. 2014;64:138–45.Google Scholar
  41. Han LK, Li DX, Xiang L, Gong XJ, Kondo Y, Suzuki I, Okuda H. Isolation of pancreatic lipase activity-inhibitory component of spirulina platensis and it reduce postprandial triacylglycerolemia. Yakugaku zasshi J Pharm Soc Jpn. 2006;126(1):43–9.CrossRefGoogle Scholar
  42. Hardeland R, Balzer I, Poeggeler B, Fuhrberg B, Uria H, Behmann G, Wolf R, Meyer TJ, Reter RJ. On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photooxidation and scavenging of free radical. J Pineal Res. 1995;18:104–11.PubMedCrossRefGoogle Scholar
  43. Hardeland R, Coto-Montes A, Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int. 2003;20:921–62.PubMedCrossRefGoogle Scholar
  44. Harman D. The free radical theory of aging. Antioxid Redox Signal. 2003;5:557–61.PubMedCrossRefGoogle Scholar
  45. Heo SJ, Yoon WJ, Kim KN, Ahn GN, Kang SM, Kang DH, Jeon YJ. Evaluation of anti-infl ammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide- stimulated RAW 264.7 macrophages. Food Chem Toxicol. 2010;48(8):2045–51.PubMedCrossRefGoogle Scholar
  46. Hollnagel HC, Di Mascio P, Asano CS, Okamoto OK, Stringher CG, Oliveira MC, Colepicolo P. The effect of Light on the biosynthesis of b-carotene and superoxide dismutase activity in the photosynthetic alga Gonyaulax polyedra. Braz J Med Biol Res. 1996;29:105–111.Google Scholar
  47. Holden JM, Eldridge AL, Beecher GR. Carotenoid content of US foods: an update of the database. J Food Compos Anal. 1998;12:169–96.CrossRefGoogle Scholar
  48. Hu Z, Li Y, Sommerfeld M, CHEN F, Hu Q. Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol. 2008;43(4):365–76.CrossRefGoogle Scholar
  49. Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science. 1998;240:1302–9.CrossRefGoogle Scholar
  50. Ip PF, Wong KH, Chen F. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem. 2004;39:1761–6.CrossRefGoogle Scholar
  51. Jacobshagen S, Kindle KL, Johnson CH. Transcription of CABII is regulated by the biological clock in Chlamydomonas reinhardtii. Plant Mol Biol. 1996;31:1173–84. 1996PubMedCrossRefGoogle Scholar
  52. Jaime F, Concepcion H. Vitamin content of four marine microalgae. Potential use as source of vitamins in nutrition. J Ind Microbiol. 1999;5(4):259–63.Google Scholar
  53. Jin E, Polle J, Lee H. Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. Microb Biotechnol. 2003;13(2):165–74.Google Scholar
  54. Kang K, Park Y, Hwang HJ, Kim SH, Lee JG, Shin HC. Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factors. Arch Pharm Res. 2003;26:286–93.PubMedCrossRefGoogle Scholar
  55. Kelman D, Posner EK, Mc Dermid KJ, Tabandera NK, Wright PR, Wright AD. Antioxidant activity of Hawaiian marine algae. Mar Drugs. 2012;10:403–16.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU, Acreman J. Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour Technol. 2007;98:2220–8.PubMedCrossRefGoogle Scholar
  57. Kobayashi M, Kakizono T, Nishio N, Nagai S, Kurimura Y, Tsuji Y. Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol. 1997;48:351–6.CrossRefGoogle Scholar
  58. Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30:620–50.PubMedCrossRefGoogle Scholar
  59. Konícková R, Vanková K, Vaníková J, Vánová K, Muchová L, Subhanová I, Vítek L. Anti-cancer effects of blue-green alga Spirulina platensis: a natural source of bilirubinlike tetrapyrrolic compounds. Ann Hepatol. 2014;13:273–83.PubMedGoogle Scholar
  60. Krinsky NI. Antioxidant functions of carotenoids. Free Radic Biol Med. 1989;7:617–35.Google Scholar
  61. Lee S-H, Lee J-B, Lee K-W, Jeon Y-J. Antioxidant properties of tidal pool microalgae, Halochlorococcum porphyrae and Oltamannsiellopsis unicellularis from Jeju Island, Korea. Algae. 2010;25:45–56.CrossRefGoogle Scholar
  62. León R, Martín M, Vigara J, Vilchez C, Vega J. Microalgae-mediated photoproduction of β-carotene in aqueous organic two phase systems. Biomol Eng. 2010;2003(20):177–82.Google Scholar
  63. Lesser MP, Stochaj WR. Photoadaptation and protection against active forms of oxygen in the symbiotic prokaryote Prochloran sp. and its ascidian host. Appl Environ Microbiol. 1990;56:1530–5.PubMedPubMedCentralGoogle Scholar
  64. Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 2000;403:391–5.PubMedCrossRefGoogle Scholar
  65. Li AH, Cheng K, Wong C, King-Wai F, Feng C, Yue J. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007;102:771–6.CrossRefGoogle Scholar
  66. Li Y, Horsman M, Wang B, Wu N, Lan CQ. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol. 2008;81:629–36.PubMedCrossRefGoogle Scholar
  67. Ludmila M, Ladislava M, Jarmila Vavra A, Jana O, Jiri M, Jiri S, Tunde J. Phenolic content and antioxidant capacity in algal food products. Molecules. 2015;20:1118–33.CrossRefGoogle Scholar
  68. Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE. The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. J Nutr. 2002;132:518S–24S.PubMedGoogle Scholar
  69. Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430:631–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mikami K, Hosokawa M. Biosynthetic pathway and health benefits of Fucoxanthin, an algae-specific Xanthophyll in Brown seaweeds. Int J Mol Sci. 2013;14(7):13763–81.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Miranda MS, Cintra RG, Barros SB, Filho JM. Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res. 1998;31:1075–9.PubMedCrossRefGoogle Scholar
  72. Naguib YMA. Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem. 2000;48:1150–4.PubMedCrossRefGoogle Scholar
  73. Nahas R, Abatis D, Anagnostopoulou MA, Kefalas P, Va-gias C, Roussis V. Radical-scavenging activity of Aegean Sea marine algae. Food Chem. 2007;102:577–81.CrossRefGoogle Scholar
  74. Namiki M. Antioxidants/antimutagens in food. Crit Rev Food Sci. 1990;29:273–300.CrossRefGoogle Scholar
  75. Natrah FMI, Yusoff FM, Shariff M, Abas F, Mariana NS. Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol. 2007;19:711–8.CrossRefGoogle Scholar
  76. Nemoto-Kawamura C, Hirahashi T, Nagai T, Yamada H, Katoh T, Hayashi O. Phycocyanin enhances secretary IgA antibody response and suppresses allergic IgE antibody response in mice immunized with antigen-entrapped biodegradable microparticles. J Nutr Sci Vitaminol. 2004;50(2):129–36.PubMedCrossRefGoogle Scholar
  77. Niyogi KK. Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:333–59.PubMedCrossRefGoogle Scholar
  78. Ou Y, Lin L, Pan Q, Yang X, Cheng X. Preventive effect of phycocyanin from Spirulina platensis on alloxan-injured mice. Environ Toxicol Pharmacol. 2012;34(3):721–6.PubMedCrossRefGoogle Scholar
  79. Pinto E, Catalani LH, Lopes NP, Di Mascio P, Colepicolo P. Peridinin as the major biological carotenoid quencher of siglet oxygen in Gonyaulax polyedra. Biochem Biophys Res Commun. 2000;268:496–500.Google Scholar
  80. Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P. Heavy metal-induced oxidative stress in algae. J Phycol. 2003;39:1008–18.CrossRefGoogle Scholar
  81. Plaza M, Herrero M, Cifuentes A, Ibáñez E. Innovative natural functional ingredients from microalgae. J Agric Food Chem. 2009;57:7159–70.PubMedCrossRefGoogle Scholar
  82. Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65:635–48.PubMedCrossRefGoogle Scholar
  83. Quist GO, Huner NPA. Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol. 2003;54:329–55.CrossRefGoogle Scholar
  84. Rady AA, MM EI-S, Matkovics B. Temperature shiftinduced changes in the antioxidant enzyme system of cyanobacterium Synechocystis PCC 6803. Int J BioChemiPhysics. 1994;26:433–5.CrossRefGoogle Scholar
  85. Raja R, Hemaiswarya S, Rengasamy R. Exploitation of Dunaliella for α-carotene production. Appl Microbiol Biotechnol. 2007;74:517–23.PubMedCrossRefGoogle Scholar
  86. Raven JA, Evans MCW, Korb RE. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res. 1999;60:111–49.CrossRefGoogle Scholar
  87. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1–9.PubMedCrossRefGoogle Scholar
  88. Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, Miyashita K. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabokites. J Agric Food Chem. 2007;55:8516–22.PubMedCrossRefGoogle Scholar
  89. Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J. Molina E. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 2008;43:398–405.CrossRefGoogle Scholar
  90. Sangeetha RK, Bhaskar N, Baskaran V. Comparative effects of β-carotene and fucoxanthin on retinol deficiency induced oxidative stress in rats. Mol Cell Biochem. 2009;331:59–67.PubMedCrossRefGoogle Scholar
  91. Seckmeyer G, McKenzie RL. Elevated ultraviolet radiationin New Zealand (458 S) contrasted with Germany (458 N). Nature. 1992;359:135–7.CrossRefGoogle Scholar
  92. Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer AM, Helley D, Colliec-Jouault S. Mar Drugs. 2011;9(9):1664–81.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Shindo K, Kimura M, Iga M. Potent antioxidant activity of cacalol, a sesquiterpene contained in Cacalia delphiniifolia Sleb et Zucc. Biosci Biotechnol Biochem. 2004;68:1393–1394.7.PubMedCrossRefGoogle Scholar
  94. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.PubMedCrossRefGoogle Scholar
  95. Sugawara T, Ganesan P, Li Z, Manabe Y, Hirata H. Siphonaxanthin, a green algal Carotenoid, as a novel functional compound. Mar Drugs. 2014;12:3660–8.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Takaichi S. Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs. 2011;9:1101–18.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tanaka K, Mitsuhashi H, Kondo N, Sugahara K. Further evidence for inactivation of fructose-1 ,6, −bisphosphate at the beginning of S02 fumigation: increase in fructose-1,6-bisphosphate and decrease in fructose-6-phosphate in S02-fumigated spinach leaves. Plant Cell Physiol. 1982;23:1467–70.CrossRefGoogle Scholar
  98. Thomas NV, Kim SK. Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ Toxicol Pharmacol. 2011;32:325–35.PubMedCrossRefGoogle Scholar
  99. Van Den Berg H, Faulks R, Granado HF, Hirschberg J, Olmedilla B, Sandmann G, Stahl W, Southon S. The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agric. 2000;80:880–912.CrossRefGoogle Scholar
  100. Viskari PJ, Colyer CL. Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal Biochem. 2003;319(2):263–71.PubMedCrossRefGoogle Scholar
  101. Vranová E, Inzé D, Van Breusegem F. Signal transduction during oxidative stress. J Exp Bot. 2002;53:1227–36.PubMedCrossRefGoogle Scholar
  102. Wang W, Qin X, Sang M, Chen D, Wang K, Lin R, Lu C, Shen J, Kuang T. Spectral and functional studies on siphonaxanthin-type light-harvesting complex of photosystem II from Bryopsis corticulans. Photosynth Res. 2013;117:267–79.PubMedCrossRefGoogle Scholar
  103. Woodall AA, Britton G, Jackson MJ. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Biochem Biophys Acta. 1997;1336:575–86.PubMedCrossRefGoogle Scholar
  104. Xue Z, Xue CH, Li ZJ, Cai YP, Liu HY, Qi HT. Antioxidant and hepatoprotective activities of low molecular weight sulfated polysaccharide from Laminaria japonica. J Appl Phycol. 2004;16:111–5.CrossRefGoogle Scholar
  105. Yabuta Y, Fujimura H, Kwak CS, Enomoto T, Wata-nabe F. Antioxidant activity of the phycoeryth- robilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci Technol Res. 2010;16:347–51.CrossRefGoogle Scholar
  106. Yan XJ, Chuda Y, Suzuki M, Nagata T. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem. 1999;63:605–7.PubMedCrossRefGoogle Scholar
  107. Yuan YV, Carrington MF, Walsh NA. Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol. 2005;43:1073–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Amity Institute of BiotechnologyAmity University, Uttar PradeshNoidaIndia

Personalised recommendations