Hydroxamic Acids as Potent Antioxidants and Their Methods of Evaluation

  • Samir MehndirattaEmail author
  • Kunal Nepali
  • Mantosh Kumar Satapathy


Hydroxamic acids are a potent class of drugs that act epigenetically to control various pharmacological functions and are currently used for the treatment of various cancers. To better understand their function and role, one must first understand the difference between genetic and epigenetics.


  1. Adcock IM, Ito K, Barnes PJ. Histone deacetylation: an important mechanism in inflammatory lung diseases. COPD: J Chron Obstruct Pulmon Dis. 2005;2:445–55.CrossRefGoogle Scholar
  2. Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceut J. 2013;21:143–52.CrossRefGoogle Scholar
  3. Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K. Methods for testing antioxidant activity. Analyst. 2002;127:183–98.CrossRefPubMedGoogle Scholar
  4. Archin NM, Espeseth A, Parker D, Cheema M, Hazuda D, Margolis DM. Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res Hum Retrovir. 2009;25:207–12.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baltan S. Histone deacetylase inhibitors preserve function in aging axons. J Neurochem. 2012;123:108–15.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bertrand P. Inside HDAC with HDAC inhibitors. Eur J Med Chem. 2010;45:2095–116.CrossRefPubMedGoogle Scholar
  7. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.CrossRefPubMedGoogle Scholar
  8. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.CrossRefPubMedGoogle Scholar
  9. Choi JH, Oh SW, Kang MS, Kwon H, Oh GT, Kim DY. Trichostatin a attenuates airway inflammation in mouse asthma model. Clin Exp Allergy. 2005;35:89–96.CrossRefPubMedGoogle Scholar
  10. Choo Q-Y, Ho PC, Tanaka Y, Lin H-S. Histone deacetylase inhibitors MS-275 and SAHA induced growth arrest and suppressed lipopolysaccharide-stimulated NF-κB p65 nuclear accumulation in human rheumatoid arthritis synovial fibroblastic E11 cells. Rheumatology 2010; keq108.Google Scholar
  11. Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, Blacher S, Verdin E, Foidart JM, Nusgens BV, Castronovo V. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 2002;21:427–36.CrossRefPubMedGoogle Scholar
  12. Dinarello CA. Anti-inflammatory agents: present and future. Cell. 2010;140:935–50.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5:981–9.CrossRefPubMedGoogle Scholar
  14. Ganesan A, Nolan L, Crabb S, Packham G. Epigenetic therapy: histone acetylation, DNA methylation and anti-cancer drug discovery. Curr Cancer Drug Targets. 2009;9:963–81.CrossRefPubMedGoogle Scholar
  15. Glauben R, Sonnenberg E, Zeitz M, Siegmund B. HDAC inhibitors in models of inflammation-related tumorigenesis. Cancer Lett. 2009;280:154–9.CrossRefPubMedGoogle Scholar
  16. Huang Y, Huang F, Mehndiratta S, Lai S, Liou JP, Yang C. Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis. Oncotarget. 2015;5:1–12.Google Scholar
  17. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.CrossRefPubMedGoogle Scholar
  18. Joosten LA, Leoni F, Meghji S, Mascagni P. Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol Med. 2011;17:391.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Joseph J, Mudduluru G, Antony S, Vashistha S, Ajitkumar P, Somasundaram K. Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Oncogene. 2004;23:6304–15.CrossRefPubMedGoogle Scholar
  20. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3:253–66.CrossRefPubMedGoogle Scholar
  21. Leder A, Orkin S, Leder P. Differentiation of erythroleukemic cells in the presence of inhibitors of DNA synthesis. Science. 1975;190:893–4.CrossRefPubMedGoogle Scholar
  22. Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, Pozzi P, Donà G, Fossati G, Sozzani S, Azam T. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci. 2002;99:2995–3000.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Leoni F, Fossati G, Lewis EC, Lee J-K, Porro G, Pagani P, Modena D, Moras ML, Pozzi P, Reznikov LL. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med. 2005;11:1.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lin HS, Hu CY, Chan HY, Liew YY, Huang HP, Lepescheux L, Bastianelli E, Baron R, Rawadi G, Clément-Lacroix P. Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol. 2007;150:862–72.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liu L-T, Chang H-C, Chiang L-C, Hung W-C. Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2 activation and cancer cell invasion. Cancer Res. 2003;63:3069–72.PubMedGoogle Scholar
  26. Ma X, Ezzeldin H, Diasio R. Histone deacetylase inhibitors: current status and overview of recent clinical trials. (vol 69, pg 1911, 2009). Drugs 2009;69:2102–2102.Google Scholar
  27. Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F, Tomasi TB. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol. 2000a;165:7017–24.CrossRefPubMedGoogle Scholar
  28. Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F, Tomasi TB. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol. 2000b;165:7017–24.CrossRefPubMedGoogle Scholar
  29. Margueron R, Trojer P, Reinberg D. The key to development: interpreting the histone code? Curr Opin Genet Dev. 2005;15:163–76.CrossRefPubMedGoogle Scholar
  30. Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotech. 2007;25:84–90.CrossRefGoogle Scholar
  31. Mazieres J, Tovar D, He B, Nieto-Acosta J, Marty-Detraves C, Clanet C, Pradines A, Jablons D, Favre G. Epigenetic regulation of RhoB loss of expression in lung cancer. BMC Cancer. 2007;7:220.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mehndiratta S, Hsieh YL, Liu YM, Wang AW, Lee HY, Liang LY, Kumar S, Teng CM, Yang CR, Liou JP. Indole-3-ethylsulfamoylphenylacrylamides: potent histone deacetylase inhibitors with anti-inflammatory activity. Eur J Med Chem. 2014;85:468–79.Google Scholar
  33. Mehndiratta S, Pan SL, Kumar S, Liou JP. Indole-3-ethylsulfamoylphenylacrylamides with potent anti-proliferative and anti-angiogenic activities. Anti Cancer Agents Med Chem. 2016;16:907–13.CrossRefGoogle Scholar
  34. Mehndiratta S, Wang R-S, Huang H-L, Su CJ, Hsu CM, Wu YW, Pan SL, Liou JP. 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo. Eur J Med Chem. 2017;134:13–23.Google Scholar
  35. Michaelis M, Michaelis UR, Fleming I, Suhan T, Cinatl J, Blaheta RA, Hoffmann K, Kotchetkov R, Busse R, Nau H, Cinatl J Jr. Valproic acid inhibits angiogenesis in vitro and in vivo. Mol Pharmacol. 2004;65:520–7.CrossRefPubMedGoogle Scholar
  36. Namdar M, Perez G, Ngo L, Marks PA. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci. 2010;107:20003–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nasu Y, Nishida K, Miyazawa S, Komiyama T, Kadota Y, Abe N, Yoshida A, Hirohata S, Ohtsuka A, Ozaki T. Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced arthritis mouse model. Osteoarthr Cartil. 2008;16:723–32.CrossRefPubMedGoogle Scholar
  38. Pandolfi P. Histone deacetylases and transcriptional therapy with their inhibitors. Cancer Chemother Pharmacol. 2001;48:S17–9.CrossRefPubMedGoogle Scholar
  39. Pasqualucci L, Bereschenko O, Niu H, Klein U, Basso K, Guglielmino R, Cattoretti G, Dalla-Favera R. Molecular pathogenesis of non-Hodgkin's lymphoma: the role of Bcl-6. Leuk Lymphoma. 2003;44:S5–S12.CrossRefPubMedGoogle Scholar
  40. Reddy P, Maeda Y, Hotary K, Liu C, Reznikov LL, Dinarello CA, Ferrara JL. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc Natl Acad Sci U S A. 2004;101:3921–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci. 1998;95:3003–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci. 2000;97:10014–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1:19–25.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rossig L, Li H, Fisslthaler B, Urbich C, Fleming I, Forstermann U, Zeiher AM, Dimmeler S. Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res. 2002;91:837–44.CrossRefPubMedGoogle Scholar
  45. Routy J-P. Valproic acid: a potential role in treating latent HIV infection. Lancet. 2005;366:523–4.CrossRefPubMedGoogle Scholar
  46. Saijo K, Katoh T, Shimodaira H, Oda A, Takahashi O, Ishioka C. Romidepsin (FK228) and its analogs directly inhibit phosphatidylinositol 3-kinase activity and potently induce apoptosis as histone deacetylase/phosphatidylinositol 3-kinase dual inhibitors. Cancer Sci. 2012;103:1994–2003.CrossRefPubMedGoogle Scholar
  47. Santos-Rosa H, Caldas C. Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer. 2005;41:2381–402.CrossRefPubMedGoogle Scholar
  48. Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods. 2015;18:757–81.CrossRefGoogle Scholar
  49. Song W, Tai Y, Tian Z, Hideshima T, Chauhan D, Nanjappa P, Exley M, Anderson K, Munshi N. HDAC inhibition by LBH589 affects the phenotype and function of human myeloid dendritic cells. Leukemia. 2011;25:161–8.CrossRefPubMedGoogle Scholar
  50. Suzuki T, Kouketsu A, Matsuura A, Kohara A, Ninomiya S, Kohda K, Miyata N. Thiol-based SAHA analogues as potent histone deacetylase inhibitors. Bioorg Med Chem. 2004;14:3313–7.CrossRefGoogle Scholar
  51. Vaiserman AM, Pasyukova EG. Epigenetic drugs: a novel anti-aging strategy? Front Genet. 2012;3(224):1–3.Google Scholar
  52. Vaiserman AM, Kolyada AK, Koshel NM, Simonenko AV, Pasyukova EG. Effect of histone deacetylase inhibitor sodium butyrate on viability and lifespan in Drosophila melanogaster. Adv Gerontol. 2013;3:30–4.CrossRefGoogle Scholar
  53. Van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 1996;5:245–54.PubMedGoogle Scholar
  54. Wagner JM, Hackanson B, Lübbert M, Jung M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics. 2010;1:117–36.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang L, de Zoeten EF, Greene MI, Hancock WW. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov. 2009;8:969–81.PubMedPubMedCentralGoogle Scholar
  56. Wang C, Eessalu TE, Barth VN, Mitch CH, Wagner FF, Hong Y, Neelamegam R, Schroeder FA, Holson EB, Haggarty SJ, Hooker JM. Design, synthesis, and evaluation of hydroxamic acid-based molecular probes for in vivo imaging of histone deacetylase (HDAC) in brain. Am J Nucl Med Mol Imaging. 2013;15:29–38.Google Scholar
  57. Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280:168–76.CrossRefPubMedGoogle Scholar
  58. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124:30–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277:8–21.CrossRefPubMedGoogle Scholar
  60. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5:37–50.CrossRefPubMedGoogle Scholar
  61. Zhang Z, Zhang Z, Schluesener H. MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis. Neuroscience. 2010;169:370–7.CrossRefPubMedGoogle Scholar
  62. Zhang Y, Yang P, Chou CJ, Liu C, Wang X, Xu W. Development of N-hydroxycinnamamide-based histone deacetylase inhibitors with an indole-containing cap group. ACS Med Chem Lett. 2013;4:235–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Samir Mehndiratta
    • 1
    Email author
  • Kunal Nepali
    • 1
  • Mantosh Kumar Satapathy
    • 2
  1. 1.School of Pharmacy, College of PharmacyTaipei Medical UniversityTaipeiTaiwan
  2. 2.Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral MedicineTaipei Medical UniversityTaipeiTaiwan

Personalised recommendations