Gold Nanoparticle-Based Methods for Detection of Oxidative Stress Biomarkers

  • Sanjay SinghEmail author


Since oxidative stress is an intrinsic part of cell inflammation, it is reported that there is a link between oxidative stress and inflammation. It is considered as the compromised capability of cells/tissues to neutralize the effect of overproduced reactive oxygen, reactive nitrogen, and other related radicals. These reactive species and radicals cause cytotoxicity, genotoxicity, and chromosomal aberration, which lead to several diseases such as cancer and neurodegenerative diseases. In order to estimate the amount of oxidative stress, several biomarkers have been identified, including glutathione, cysteine, 3-nitrotyrosine, cellular peroxide level, the extent of lipid peroxidation and C-reactive proteins, etc. Although these and other oxidative stress biomarkers are identified, but the adequate methods of detection and quantification at the early stage and with lower biomarker concentrations are limited. Gold nanoparticle-based assays and nanosensors are being used to enhance the potential of disease diagnostics at an early stage. The intrinsic properties of gold nanoparticles, such as plasmonic resonance energy transfer, shape- and size-dependent visible and near-infrared region absorbance and fluorescence, etc., have been used for the construction of sensitive methods of oxidative stress. This chapter comprehensively summarizes the oxidative stress biomarkers and their method of detection using gold nanoparticles.


Gold nanoparticles Oxidative stress Glutathione Biomarkers Superoxides Hydroxyl radicals 



The financial assistance for the Centre for Nanotechnology Research and Applications (CENTRA) by the Gujarat Institute of Chemical Technology (GICT) is acknowledged. The funding from the Department of Science and Technology – Science and Engineering Research Board (SERB) (Grant No.: ILS/SERB/2015-16/01) to Dr. Sanjay Singh under the scheme of Start-Up Research Grant (Young Scientists) in Life Sciences is also gratefully acknowledged. This manuscript carries a DBLS communication number DBLS-074.

Conflict of Interest



  1. Abdelhamid HN, Wu HF. Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells. Anal Bioanal Chem. 2016;408:4485–502.PubMedCrossRefGoogle Scholar
  2. Allin KH, Nordestgaard BG. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit Rev Clin Lab Sci. 2011;48:155–70.PubMedCrossRefGoogle Scholar
  3. Altmeppen HC, Prox J, Puig B, Dohler F, Falker C, Krasemann S, Glatzel M. Roles of endoproteolytic α-cleavage and shedding of the prion protein in neurodegeneration. FEBS J. 2013;280:4338–47.PubMedCrossRefGoogle Scholar
  4. Azzazy HM, Mansour MM, Samir TM, Franco R. Gold nanoparticles in the clinical laboratory: principles of preparation and applications. Clin Chem Lab Med. 2011;50:193–209.PubMedGoogle Scholar
  5. Bagci PO, Wang YC, Gunasekaran S. A simple and green route for room-temperature synthesis of gold nanoparticles and selective colorimetric detection of cysteine. J Food Sci. 2015;80:N2071–8.PubMedCrossRefGoogle Scholar
  6. Byun JY, Shin YB, Kim DM, Kim MG. A colorimetric homogeneous immunoassay system for the C-reactive protein. Analyst. 2013;138:1538–43.PubMedCrossRefGoogle Scholar
  7. Carlsson CM. Homocysteine lowering with folic acid and vitamin B supplements: effects on cardiovascular disease in older adults. Drugs Aging. 2006;23:491–502.PubMedCrossRefGoogle Scholar
  8. Chen Z, Luo S, Liu C, Cai Q. Simple and sensitive colorimetric detection of cysteine based on ssDNA-stabilized gold nanoparticles. Anal Bioanal Chem. 2009;395:489–94.PubMedCrossRefGoogle Scholar
  9. Chen Z, Wang Z, Chen J, Wang S, Huang X. Sensitive and selective detection of glutathione based on resonance light scattering using sensitive gold nanoparticles as colorimetric probes. Analyst. 2012;137:3132–7.PubMedCrossRefGoogle Scholar
  10. Chen Z, Li J, Chen X, Cao J, Zhang J, Min Q, Zhu JJ. Single gold@silver nanoprobes for real-time tracing the entire autophagy process at single-cell level. J Am Chem Soc. 2015;137:1903–8.PubMedCrossRefGoogle Scholar
  11. Chen-Plotkin AS. Unbiased approaches to biomarker discovery in neurodegenerative diseases. Neuron. 2014;84:594–607.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cretich M, Daaboul GG, Sola L, Unlu MS, Chiari M. Digital detection of biomarkers assisted by nanoparticles: application to diagnostics. Trends Biotechnol. 2015;33:343–51.PubMedCrossRefGoogle Scholar
  13. de la Escosura-Muniz A, Plichta Z, Horak D, Merkoci A. Alzheimer’s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosens Bioelectron. 2015;67:162–9.PubMedCrossRefGoogle Scholar
  14. Deng J, Lu Q, Hou Y, Liu M, Li H, Zhang Y, Yao S. Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals. Anal Chem. 2015;87:2195–203.PubMedCrossRefGoogle Scholar
  15. Ding P, Liu R, Liu S, Mao X, Hu R, Li G. Reusable gold nanoparticle enhanced QCM immunosensor for detecting C-reactive protein. Sensors Actuators B Chem. 2013;188:1277–83.CrossRefGoogle Scholar
  16. El Assar M, Angulo J, Rodriguez-Manas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med. 2013;65:380–401.PubMedCrossRefGoogle Scholar
  17. Fakanya WM, Tothill IE. Detection of the inflammation biomarker C-reactive protein in serum samples: towards an optimal biosensor formula. Biosensors. 2014;4:340–57.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Gao X, Tsou YH, Garis M, Huang H, Xu X. Highly specific colorimetric detection of DNA oxidation biomarker using gold nanoparticle/triplex DNA conjugates. Nanomedicine. 2016;12:2101–5.PubMedCrossRefGoogle Scholar
  19. Garcia-Marin A, Abad JM, Ruiz E, Lorenzo E, Piqueras J, Pau JL. Glutathione immunosensing platform based on total internal reflection ellipsometry enhanced by functionalized gold nanoparticles. Anal Chem. 2014;86:4969–76.PubMedCrossRefGoogle Scholar
  20. Gerszten RE, Asnani A, Carr SA. Status and prospects for discovery and verification of new biomarkers of cardiovascular disease by proteomics. Circ Res. 2011;109:463–74.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Grivennikova VG, Kozlovsky VS, Vinogradov AD. Respiratory complex II: ROS production and the kinetics of ubiquinone reduction. Biochim Biophys Acta. 2016;1858(2):109–17.PubMedCrossRefGoogle Scholar
  22. Guclu K, Ozyurek M, Gungor N, Baki S, Apak R. Selective optical sensing of biothiols with Ellman’s reagent: 5,5′-Dithio-bis(2-nitrobenzoic acid)-modified gold nanoparticles. Anal Chim Acta. 2013;794:90–8.PubMedCrossRefGoogle Scholar
  23. Guo L, Ferhan AR, Lee K, Kim DH. Nanoarray-based biomolecular detection using individual Au nanoparticles with minimized localized surface plasmon resonance variations. Anal Chem. 2011;83:2605–12.PubMedCrossRefGoogle Scholar
  24. Haller E, Lindner W, Lammerhofer M. Gold nanoparticle-antibody conjugates for specific extraction and subsequent analysis by liquid chromatography-tandem mass spectrometry of malondialdehyde-modified low density lipoprotein as biomarker for cardiovascular risk. Anal Chim Acta. 2015;857:53–63.PubMedCrossRefGoogle Scholar
  25. Hinterwirth H, Stubiger G, Lindner W, Lammerhofer M. Gold nanoparticle-conjugated anti-oxidized low-density lipoprotein antibodies for targeted lipidomics of oxidative stress biomarkers. Anal Chem. 2013;85:8376–84.PubMedCrossRefGoogle Scholar
  26. Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol. 2013;1:483–91.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hu B, Cao X, Zhang P. Selective colorimetric detection of glutathione based on quasi-stable gold nanoparticles assembly. New J Chem. 2013;37:3853–6.CrossRefGoogle Scholar
  28. Huang X, Zhang J, Liu J, Sun L, Zhao H, Lu Y, Wang J, Li J. C-reactive protein promotes adhesion of monocytes to endothelial cells via NADPH oxidase-mediated oxidative stress. J Cell Biochem. 2012;113:857–67.PubMedCrossRefGoogle Scholar
  29. Islam MS, Kang SH. Chemiluminescence detection of label-free C-reactive protein based on catalytic activity of gold nanoparticles. Talanta. 2011;84:752–8.PubMedCrossRefGoogle Scholar
  30. Iwasaki Y, Kimura T, Orisaka M, Kawasaki H, Goda T, Yusa S. Label-free detection of C-reactive protein using highly dispersible gold nanoparticles synthesized by reducible biomimetic block copolymers. Chem Commun (Camb). 2014;50:5656–8.CrossRefGoogle Scholar
  31. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9:515–40.PubMedCrossRefGoogle Scholar
  32. Jia LP, Liu JF, Wang HS. Electrochemical performance and detection of 8-Hydroxy-2′-deoxyguanosine at single-stranded DNA functionalized graphene modified glassy carbon electrode. Biosens Bioelectron. 2015;67:139–45.PubMedCrossRefGoogle Scholar
  33. Jv Y, Li B, Cao R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun (Camb). 2010;46:8017–9.CrossRefGoogle Scholar
  34. Kannan P, John SA. Ultrasensitive detection of L-cysteine using gold-5-amino-2-mercapto-1,3,4-thiadiazole core-shell nanoparticles film modified electrode. Biosens Bioelectron. 2011;30:276–81.PubMedCrossRefGoogle Scholar
  35. Karakoti AS, Shukla R, Shanker R, Singh S. Surface functionalization of quantum dots for biological applications. Adv Colloid Interf Sci. 2015;215:28–45.CrossRefGoogle Scholar
  36. Kim HM, Jin SM, Lee SK, Kim MG, Shin YB. Detection of biomolecular binding through enhancement of Localized Surface Plasmon Resonance (LSPR) by gold nanoparticles. Sensors (Basel, Switzerland). 2009;9:2334–44.CrossRefGoogle Scholar
  37. Kitayama Y, Takeuchi T. Localized surface plasmon resonance nanosensing of C-reactive protein with poly(2-methacryloyloxyethyl phosphorylcholine)-grafted gold nanoparticles prepared by surface-initiated atom transfer radical polymerization. Anal Chem. 2014;86:5587–94.PubMedCrossRefGoogle Scholar
  38. Kojima T, Yabe Y, Kaneko A, Hirano Y, Ishikawa H, Hayashi M, Miyake H, Takagi H, Kato T, Terabe K, Wanatabe T, Tsuchiya H, Kida D, Shioura T, Funahashi K, Kato D, Matsubara H, Takahashi N, Hattori Y, Asai N, Ishiguro N. Monitoring C-reactive protein levels to predict favourable clinical outcomes from tocilizumab treatment in patients with rheumatoid arthritis. Mod Rheumatol. 2013;23:977–85.PubMedCrossRefGoogle Scholar
  39. Koposova E, Liu X, Kisner A, Ermolenko Y, Shumilova G, Offenhausser A, Mourzina Y. Bioelectrochemical systems with oleylamine-stabilized gold nanostructures and horseradish peroxidase for hydrogen peroxide sensor. Biosens Bioelectron. 2014;57:54–8.PubMedCrossRefGoogle Scholar
  40. Kushner I, Antonelli MJ. What should we regard as an “elevated” C-reactive protein level? Ann Intern Med. 2015;163:326.PubMedCrossRefGoogle Scholar
  41. Li Y, Wu P, Xu H, Zhang H, Zhong X. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity. Analyst. 2011;136:196–200.PubMedCrossRefGoogle Scholar
  42. Li Y, Lu Q, Wu S, Wang L, Shi X. Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@shell structure. Biosens Bioelectron. 2013;41:576–81.PubMedCrossRefGoogle Scholar
  43. Li WJ, Chen XM, Nie XY, Zhang J, Cheng YJ, Lin XX, Wu SH. Cardiac troponin and C-reactive protein for predicting all-cause and cardiovascular mortality in patients with chronic kidney disease: a meta-analysis. Clinics (Sao Paulo, Brazil). 2015;70:301–11.CrossRefGoogle Scholar
  44. Li Y, Zhang Y, Zhao M, Zhou Q, Wang L, Wang H, Wang X, Zhan L. A simple aptamer-functionalized gold nanorods based biosensor for the sensitive detection of MCF-7 breast cancer cells. Chem Commun (Camb). 2016;52:3959–61.CrossRefGoogle Scholar
  45. Li J-F, Huang P-C, Wu F-Y. Highly selective and sensitive detection of glutathione based on anti-aggregation of gold nanoparticles via pH regulation. Sensors Actuators B Chem. 2017;240:553–9.CrossRefGoogle Scholar
  46. Liu H, Tian Y, Xia P. Pyramidal, rodlike, spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase: application to superoxide anion biosensors. Langmuir. 2008;24:6359–66.PubMedCrossRefGoogle Scholar
  47. Liu H, Wang YS, Tang X, Yang HX, Chen SH, Zhao H, Liu SD, Zhu YF, Wang XF, Huang YQ. A novel fluorescence aptasensor for 8-hydroxy-2′-deoxyguanosine based on the conformational switching of K(+)-stabilized G-quadruplex. J Pharm Biomed Anal. 2016;118:177–82.PubMedCrossRefGoogle Scholar
  48. Lu W, Qian C, Bi L, Tao L, Ge J, Dong J, Qian W. Biomolecule-based formaldehyde resin microspheres loaded with Au nanoparticles: a novel immunoassay for detection of tumor markers in human serum. Biosens Bioelectron. 2014;53:346–54.PubMedCrossRefGoogle Scholar
  49. Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol. 2011;51:128–52.PubMedCrossRefGoogle Scholar
  50. Maji SK, Sreejith S, Mandal AK, Ma X, Zhao Y. Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl Mater Interfaces. 2014;6:13648–56.PubMedCrossRefGoogle Scholar
  51. Maysinger D, Ji J, Hutter E, Cooper E. Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells. Front Neurosci. 2015;9:480.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mishra SK, Sharma V, Kumar D. Rajesh Biofunctionalized gold nanoparticle-conducting polymer nanocomposite based bioelectrode for CRP detection. Appl Biochem Biotechnol. 2014;174:984–97.PubMedCrossRefGoogle Scholar
  53. Mongeon R, Venkatachalam V, Yellen G. Cytosolic NADH-NAD(+) redox visualized in brain slices by two-photon fluorescence lifetime biosensor imaging. Antioxid Redox Signal. 2016;25:553–63.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Muller FL, Liu Y, Abdul-Ghani MA, Lustgarten MS, Bhattacharya A, Jang YC, Van Remmen H. High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates. Biochem J. 2008;409:491–9.PubMedCrossRefGoogle Scholar
  55. Mytilineou C, Kramer BC, Yabut JA. Glutathione depletion and oxidative stress. Parkinsonism Relat Disord. 2002;8:385–7.PubMedCrossRefGoogle Scholar
  56. Nandini S, Nalini S, Sanetuntikul J, Shanmugam S, Niranjana P, Melo JS, Suresh GS. Development of a simple bioelectrode for the electrochemical detection of hydrogen peroxide using Pichia pastoris catalase immobilized on gold nanoparticle nanotubes and polythiophene hybrid. Analyst. 2014;139:5800–12.PubMedCrossRefGoogle Scholar
  57. Nery AA, Wrenger C, Ulrich H. Recognition of biomarkers and cell-specific molecular signatures: aptamers as capture agents. J Sep Sci. 2009;32:1523–30.PubMedCrossRefGoogle Scholar
  58. Oh YK, Joung HA, Han HS, Suk HJ, Kim MG. A three-line lateral flow assay strip for the measurement of C-reactive protein covering a broad physiological concentration range in human sera. Biosens Bioelectron. 2014;61:285–9.PubMedCrossRefGoogle Scholar
  59. Olson J, Dominguez-Medina S, Hoggard A, Wang LY, Chang WS, Link S. Optical characterization of single plasmonic nanoparticles. Chem Soc Rev. 2015;44:40–57.PubMedCrossRefGoogle Scholar
  60. Pandey PC, Pandey G, Narayan RJ. Controlled synthesis of polyethylenimine coated gold nanoparticles: application in glutathione sensing and nucleotide delivery. J Biomed Mater Res. 2016; doi: 10.1002/jbm.b.33647.
  61. Paudel NR, Shvydka D, Parsai EI. A novel property of gold nanoparticles: free radical generation under microwave irradiation. Med Phys. 2016;43:1598.PubMedCrossRefGoogle Scholar
  62. Pelley J. Solar cells that harness infrared light. Environ Sci Technol. 2005;39:151A–2A.PubMedCrossRefGoogle Scholar
  63. Pelossof G, Tel-Vered R, Liu XQ, Willner I. Amplified surface plasmon resonance based DNA biosensors, aptasensors, and Hg2+ sensors using hemin/G-quadruplexes and Au nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany). 2011;17:8904–12.Google Scholar
  64. Peng C, Duan X, Xie Z, Liu C. Shape-controlled generation of gold nanoparticles assisted by dual-molecules: the development of hydrogen peroxide and oxidase-based biosensors. J Nanomater. 2014;2014:7.CrossRefGoogle Scholar
  65. Qu LL, Li DW, Qin LX, Mu J, Fossey JS, Long YT. Selective and sensitive detection of intracellular O2(*-) using Au NPs/cytochrome c as SERS nanosensors. Anal Chem. 2013;85:9549–55.PubMedCrossRefGoogle Scholar
  66. Rabbani N, Thornalley PJ. Assay of 3-nitrotyrosine in tissues and body fluids by liquid chromatography with tandem mass spectrometric detection. Methods Enzymol. 2008;440:337–59.PubMedCrossRefGoogle Scholar
  67. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006;1:3159–65.PubMedCrossRefGoogle Scholar
  68. Saftig P, Bovolenta P. Proteases at work: cues for understanding neural development and degeneration. Front Mol Neurosci. 2015;8:13.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Sang Y, Zhang L, Li YF, Chen LQ, Xu JL, Huang CZ. A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles. Anal Chim Acta. 2010;659:224–8.PubMedCrossRefGoogle Scholar
  70. Santhosh P, Manesh KM, Lee SH, Uthayakumar S, Gopalan AI, Lee KP. Sensitive electrochemical detection of superoxide anion using gold nanoparticles distributed poly(methyl methacrylate)-polyaniline core-shell electrospun composite electrode. Analyst. 2011;136:1557–61.PubMedCrossRefGoogle Scholar
  71. Savaliya R, Shah D, Singh R, Kumar A, Shanker R, Dhawan A, Singh S. Nanotechnology in disease diagnostic techniques. Curr Drug Metab. 2015;16:645–61.PubMedCrossRefGoogle Scholar
  72. Savaliya R, Singh P, Singh S. Pharmacological drug delivery strategies for improved therapeutic effects: recent advances. Curr Pharm Des. 2016;22:1506–20.PubMedCrossRefGoogle Scholar
  73. Schauermann S, Nilius N, Shaikhutdinov S, Freund HJ. Nanoparticles for heterogeneous catalysis: new mechanistic insights. Acc Chem Res. 2013;46:1673–81.PubMedCrossRefGoogle Scholar
  74. Shi Y, Zhang H, Yue Z, Zhang Z, Teng KS, Li MJ, Yi C, Yang M. Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection. Nanotechnology. 2013;24:375501.PubMedCrossRefGoogle Scholar
  75. Singh S. Nanomaterials as non-viral siRNA delivery agents for cancer therapy. Bioimpacts. 2013;3:53–65.PubMedPubMedCentralGoogle Scholar
  76. Singh S, Patel P, Jaiswal S, Prabhune AA, Ramana CV, Prasad BLV. A direct method for the preparation of glycolipid-metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity. New J Chem. 2009;33:646–52.CrossRefGoogle Scholar
  77. Singh S, Sharma A, Robertson GP. Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns. Cancer Res. 2012;72:5663–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Singh R, Karakoti AS, Self WT, Seal S, Singh S. Redox-sensitive cerium oxide nanoparticles protect human keratinocytes from oxidative stress induced by glutathione depletion. Langmuir. 2016;32(46):12202–11.PubMedCrossRefGoogle Scholar
  79. Smaga I, Niedzielska E, Gawlik M, Moniczewski A, Krzek J, Przegalinski E, Pera J, Filip M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep. 2015;67:569–80.PubMedCrossRefGoogle Scholar
  80. Sophia J, Muralidharan G. Gold nanoparticles for sensitive detection of hydrogen peroxide: a simple non-enzymatic approach. J Appl Electrochem. 2015;45:963–71.CrossRefGoogle Scholar
  81. Su X, Jiang H, Wang X. Thiols-induced rapid Photoluminescent enhancement of glutathione-capped gold nanoparticles for intracellular thiols imaging applications. Anal Chem. 2015;87:10230–6.PubMedCrossRefGoogle Scholar
  82. Tang B, Zhang N, Chen Z, Xu K, Zhuo L, An L, Yang G. Probing hydroxyl radicals and their imaging in living cells by use of FAM-DNA-Au nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany). 2008;14:522–8.Google Scholar
  83. Tracy CR, Henning JR, Newton MR, Aviram M, Bridget Zimmerman M. Oxidative stress and nephrolithiasis: a comparative pilot study evaluating the effect of pomegranate extract on stone risk factors and elevated oxidative stress levels of recurrent stone formers and controls. Urolithiasis. 2014;42:401–8.PubMedCrossRefGoogle Scholar
  84. Trpkovic A, Resanovic I, Stanimirovic J, Radak D, Mousa SA, Cenic-Milosevic D, Jevremovic D, Isenovic ER. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit Rev Clin Lab Sci. 2015;52:70–85.PubMedCrossRefGoogle Scholar
  85. Tucker PS, Scanlan AT, Dalbo VJ. Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxidative Med Cell Longev. 2015;2015:806358.CrossRefGoogle Scholar
  86. Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health. 2009;27:120–39.CrossRefGoogle Scholar
  87. Vance SA, Sandros MG. Zeptomole detection of C-reactive protein in serum by a nanoparticle amplified surface plasmon resonance imaging aptasensor. Sci Rep. 2014;4:5129.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Wang L, Wen W, Xiong H, Zhang X, Gu H, Wang S. A novel amperometric biosensor for superoxide anion based on superoxide dismutase immobilized on gold nanoparticle-chitosan-ionic liquid biocomposite film. Anal Chim Acta. 2013;758:66–71.PubMedCrossRefGoogle Scholar
  89. Wang P, Jin B, Xing Y, Cheng Z, Ge Y, Zhang H, Hu B, Mao H, Jin Q, Zhao J. Rolling circle amplification immunoassay combined with gold nanoparticle aggregates for colorimetric detection of protein. J Nanosci Nanotechnol. 2014;14:5662–8.PubMedCrossRefGoogle Scholar
  90. Wang N, Han Y, Xu Y, Gao C, Cao X. Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires. Anal Chem. 2015;87:457–63.PubMedCrossRefGoogle Scholar
  91. Wilson AJ, Willets KA. Surface-enhanced Raman scattering imaging using noble metal nanoparticles. Wiley Interdiscip Rev. 2013;5:180–9.Google Scholar
  92. Wu ZS, Zhang SB, Guo MM, Chen CR, Shen GL, Yu RQ. Homogeneous, unmodified gold nanoparticle-based colorimetric assay of hydrogen peroxide. Anal Chim Acta. 2007;584:122–8.PubMedCrossRefGoogle Scholar
  93. Wu L, Yang Y, Zhang H, Zhu G, Zhang X, Chen J. Sensitive electrochemical detection of hydroxyl radical with biobarcode amplification. Anal Chim Acta. 2012;756:1–6.PubMedCrossRefGoogle Scholar
  94. Wu S, Tan SY, Ang CY, Luo Z, Zhao Y. Oxidation-triggered aggregation of gold nanoparticles for naked-eye detection of hydrogen peroxide. Chem Commun (Camb). 2016a;52:3508–11.CrossRefGoogle Scholar
  95. Wu B, Jiang R, Wang Q, Huang J, Yang X, Wang K, Li W, Chen N, Li Q. Detection of C-reactive protein using nanoparticle-enhanced surface plasmon resonance using an aptamer-antibody sandwich assay. Chem Commun (Camb). 2016b;52:3568–71.CrossRefGoogle Scholar
  96. Xianyu Y, Xie Y, Wang N, Wang Z, Jiang X. A dispersion-dominated chromogenic strategy for colorimetric sensing of glutathione at the Nanomolar level using gold nanoparticles. Small (Weinheim an der Bergstrasse, Germany). 2015;11:5510–4.CrossRefGoogle Scholar
  97. Xu M, Ramirez-Correa GA, Murphy AM. Proteomics of pediatric heart failure: from traditional biomarkers to new discovery strategies. Cardiol Young. 2015;25(Suppl 2):51–7.PubMedCrossRefGoogle Scholar
  98. Yagati AK, Lee T, Min J, Choi JW. Electrochemical performance of gold nanoparticle-cytochrome c hybrid interface for H2O2 detection. Colloids Surf. 2012;92:161–7.CrossRefGoogle Scholar
  99. Yahia D, Haruka I, Kagashi Y, Tsuda S. 8-Hydroxy-2′-deoxyguanosine as a biomarker of oxidative DNA damage induced by perfluorinated compounds in TK6 cells. Environ Toxicol. 2016;31:192–200.PubMedCrossRefGoogle Scholar
  100. Yellen G, Mongeon R. Quantitative two-photon imaging of fluorescent biosensors. Curr Opin Chem Biol. 2015;27:24–30.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zamani-Kalajahi M, Hasanzadeh M, Shadjou N, Khoubnasabjafari M, Ansarin K, Jouyban-Gharamaleki V, Jouyban A. Electrodeposition of taurine on gold surface and electro-oxidation of malondialdehyde. Surf Eng. 2014;31:194–201.CrossRefGoogle Scholar
  102. Zhang R, Zhang YY, Huang XR, Wu Y, Chung AC, Wu EX, Szalai AJ, Wong BC, Lau CP, Lan HY. C-reactive protein promotes cardiac fibrosis and inflammation in angiotensin II-induced hypertensive cardiac disease. Hypertension. 2010;55:953–60.PubMedCrossRefGoogle Scholar
  103. Zhang D, Zhao H, Fan Z, Li M, Du P, Liu C, Li Y, Li H, Cao H. A highly sensitive and selective hydrogen peroxide biosensor based on gold nanoparticles and three-dimensional porous carbonized chicken eggshell membrane. PLoS One. 2015;10:e0130156.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Division of Biological and Life Sciences, School of Arts and SciencesAhmedabad University Central CampusAhmedabadIndia

Personalised recommendations