Skip to main content

Phytase: The Feed Enzyme, an Overview

  • Chapter
  • First Online:

Abstract

This chapter confers an overview of the food enzyme ‘phytase’ that mediates hydrolysis of phytic acid decoyed in food of plant origin. It emphasizes on the molecular classification, sources and production of phytase along with its practical applications. A wide and comprehensive discussion of the phytase, which performs a pivotal function in biochemistry of inositol phosphates, is covered herein along with cataloguing a number of sources that produce the enzyme. Phytase have promising applications in food and fodder industries for enhancing digestibility and absorption of nutrients by upholding the anti-nutritional value of phytic acid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaron A (2006) Expanding our knowledge of protein tyrosine phosphatase-like phytases: mechanism, substrate specificity and pathways of myo-inositol hexakisphosphate dephosphorylation. Dissertation for the Master’s Degree. University of Lethbridge, Lethbridge, p 10–13

    Google Scholar 

  • Admassu S (2009) Potential health benefits and problems associated with phytochemical in food legumes. East Afr J Sci 3(2):116–133

    Google Scholar 

  • Akinmusire AS, Adeola O (2009) True digestibility of phosphorus in canola and soybean meals for growing pigs: influence of microbial phytase. J Anim Sci 87:977–983

    Article  PubMed  CAS  Google Scholar 

  • Ali M, Shuja MN, Zahoor M, Qadri I (2010) Phytic acid:how far have we come? Afr J Biotech 9(11):1551–1554

    Article  CAS  Google Scholar 

  • Angel R, Tamim NM, Applegate TJ, Dhandu AS, Ellestad LE (2002) Phytic acid chemistry: influence on phytin-phosphorus availability and phytase efficacy. J Appl Poult Res 11:471–480

    Article  CAS  Google Scholar 

  • Angelis MD, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270

    Article  PubMed  CAS  Google Scholar 

  • Anons (1998) Enzymes emerge as big feed supplement. Chem Eng News 29–302. 4 May

    Google Scholar 

  • Antrim RL, Mitchinson C, Solheim LP (1997) Method for liquefying starch. US patent 5652127

    Google Scholar 

  • Arnarson A (2015) PhD. Phytic acid: 101 everything you need to know authority nutrition. http://authoritynutrition.com/phytic-acid-101/

  • Augspurger NR, Webel DW, Lei XG, Baker DH (2003) Efficacy of E. coli phytase expressedin yeast for releasing phytate-bound phosphorus in young chicks and pigs. J Anim Sci 81:474–483

    Article  PubMed  CAS  Google Scholar 

  • Baldi BG, Scott JJ, Everard JD, Loewus FA (1988) Localization of constitutive phytases in lily pollen and properties of the pH 8 form. Plant Sci 56:137–147

    Article  CAS  Google Scholar 

  • Bali A, Satyanarayana T (2001) Microbial phytases in nutrition and combating phosphorus pollution. Every Man’s Sci 4:207–209

    Google Scholar 

  • Barrientos L, Scott JJ, Murthy PP (1994) Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol 106:1489–1495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrier-Guillot B, Casado P, Maupetit P, Jondreville C, Gatel F (1996) Wheat phosphorus availability: in vitro study; factors affecting endogenous phytasic activity and phytic phosphorus content. J Sci Food Agric 70:62–68

    Article  CAS  Google Scholar 

  • Baur X, Melching-Kollmuss S, Koops F, Straßburger K, Zober A (2002) IgE-mediated allergy to phytase-a new animal feed additive. Allergy 57:943–945

    Article  PubMed  CAS  Google Scholar 

  • Bedford MR (2000) Exogenous enzymes in monogastric nutrition their current value and future benefits. Anim Feed Sci Technol 86:113

    Article  Google Scholar 

  • Berka RM, Rey MW, Brown KM, Byun T, Klotz AV (1998) Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl Environ Microbiol 64:4423–4427

    PubMed  PubMed Central  CAS  Google Scholar 

  • Berridge MJ, Irvine ILF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Article  PubMed  CAS  Google Scholar 

  • Bianchetti R, Sartirana ML (1967) The mechanism of the repression by inorganic phosphate of phytase synthesis in the germinating wheat embryo. Biochim Biophys Acta 145:485–490

    Article  PubMed  CAS  Google Scholar 

  • Bitar K, Reinhold JG (1972) Phytase and alkaline phosphatase activities in intestinal mucose of rat, chicken, calf, and man. Biochim Biophys Acta 268:442–452

    Article  CAS  Google Scholar 

  • Bogar B, Szakacs G, Tengerdy RP, Linden JC, Pandey A (2003a) Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnol Prod 19(2):312–319

    Article  CAS  Google Scholar 

  • Bogar B, Szakacs G, Linden JC, Pandey A, Tengerdy RP (2003b) Optimization of phytase production by solid substrate fermentation. J Ind Microbiol Biotech 30(3):183–189

    Article  CAS  Google Scholar 

  • Boling SD, Douglas MW, Johnson ML, Wang X et al (2000) The effects of dietary available phosphorus levels and phytase performance of young and older laying hens. Poult Sci 79:224–230

    Article  PubMed  CAS  Google Scholar 

  • Brugger R, SimoesNunes C, Hug D, Vogel K, Guggenbuhl P, Mascarello F (2003) Characteristics of fungal phytases from Aspergillus fumigatus and Sartorya fumigata. Appl Microbiol Biotechnol 63:383–389

    Article  PubMed  CAS  Google Scholar 

  • Burbano C, Muzquiz M, Osagic A, Ayet G, Cuadrado C (1995) Determination of phytate and lower inositol phosphates in Spanish legumes by HPLC methodology. Food Chem 52:321–325

    Article  CAS  Google Scholar 

  • Carla EH, Elizabeth AG (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol 126:1598–1608

    Article  Google Scholar 

  • Carrington AL, Calcutt NA, Ettlinger CB, Gustafsson T, Tomlinson DR (1993) Effects of treatment with myo-inositol or its 1,2,6-trisphosphate (PP56) on nerve conduction in streptozotocin-diabetes. Eur J Pharmacol 237:257–263

    Article  PubMed  CAS  Google Scholar 

  • Casey A, Walsh G (2003) Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresour Technol 86(2):183–188

    Article  PubMed  CAS  Google Scholar 

  • Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110(3):313–322

    Article  PubMed  CAS  Google Scholar 

  • Cenzone (1999) Cenzyme, http://www.ras-international.com/cenzone/cenzyme.htm

  • Chadha BS, Gulati H, Minhas M, Saini HS, Singh N (2004) Phytase production by the thermophilic fungus Rhizomucor pusillus. World J Microbiol Biotechnol 20:105–109

    Article  CAS  Google Scholar 

  • Chelius MK, Wodzinski RJ (1994) Strain improvement of Aspergillus niger for phytase production. Appl Microbiol Biotechnol 41:79–83

    Article  CAS  Google Scholar 

  • Chen C, Hunag C, Cheng K (2001) Improvement of phytase thermostability by using sorghum liquor wastes supplemented with starch. Biotechnol Lett 23:331–333

    Article  CAS  Google Scholar 

  • Cheng KJ, Selinger LB, Yanke LJ, Bae HD, Zhou L, Forsberg CW (1999) Phytases of rumen micro-organisms, particularly of Selenomonas ruminantium, and uses there of in feed additives and in transgenic plants. US Patent 5(985):605

    Google Scholar 

  • Cheryan M (1980) Phytic acid interactions in food systems. CRC Crit Rev Food Sci Nutr 13:297–335

    Article  CAS  Google Scholar 

  • Cho JS, Lee CW, Kang SH, Lee JC, Bok JD, Moon YS, Lee HG, Kim SC, Choi YJ (2003) Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr Microbiol 47:290–294

    Article  PubMed  CAS  Google Scholar 

  • Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem 20:287–292

    Article  PubMed  CAS  Google Scholar 

  • Chu HM, Guo RT, Lin TW, Chou CC, Shr HL et al (2004) Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure 12:2015–2024

    Article  PubMed  CAS  Google Scholar 

  • Claxon A, Morris C, Blake D, Siren M et al (1990) The anti-inflammatory effects of D-myo-inositol-1, 2,6-trisphosphate (PP56) on animal models of inflammation. Agents Actions 29:68–70

    Article  Google Scholar 

  • Coello P, Maughan JP, Mendoza A, Philip R et al (2001) Generation of low phytic acid Arabidopsis seeds expressing an E. coli phytase during embryo development. Seed Sci Res 11:285–291

    CAS  Google Scholar 

  • Correia I, Aksu S, Adao P, Pessoa JC, Sheldon RA, Arends IWCE (2008) Vanadate substituted phytase: immobilization, structural characterization and performance for sulfoxidations. J Inorg Biochem 102:318–329

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1970) Inositol phosphate phosphatase of microbiological origin, inositol pentaphosphate intermediates in the dephosphorylation of the hexaphosphates of myo-inositol, scyllo-inositol, and D-chiro-inositol, by a bacterial (Pseudomonas sp.) phytase. Aust J Biol Sci 23:1207–1220

    Article  PubMed  CAS  Google Scholar 

  • Craxton A, Caffrey JJ, Burkhart W, Safrany ST, Shears SB (1997) Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochem J 328:75–81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahiya S, Kumar K, Kumar N, Singh N (2008) Standardisation of incubation time forphytase enzyme secretion using RSM model international conference on molecular biology and biotechnology. Department of Biosciences and Biotechnology, Banasthali University, p 121. October 19–21

    Google Scholar 

  • Dahiya S, Singh N, Rana JS (2009) Optimization of growth parameters of phytase producing fungus using RSM. J Sci Ind Res 68(11):955–958

    CAS  Google Scholar 

  • Dahiya S, Kumar K, Kumar N, Singh N, Rana JS (2010) Optimization of assay conditions using RSM approach for phytase enzyme production by Bacillus cereus MTCC 10072. An Biol 26(2):101–107

    CAS  Google Scholar 

  • Dalal RC (1997) Soil organic phosphorus. Adv Agron 29:83–117

    Article  Google Scholar 

  • Dao TH (2003) Polyvalent cation effects on myo-inositol hexakis dihydrogen phosphate enzymatic dephosphorylation in dairy wastewater. J Environ Qual 32:694–701

    Article  PubMed  CAS  Google Scholar 

  • Davies NT, Flett AA (1978) The similarity between alkaline phosphatase (EC 3.1.3.1) and phytase (EC 3.1.3.8) activities in rat intestine and their importance in phytate-induced zinc deficiency. Br J Nutr 39:307–316

    Article  PubMed  CAS  Google Scholar 

  • Davies MI, Motzok I (1972) Intestinal alkaline phosphatase and phytase of chicks: separation of isoenzymes, zinc contents and in vitro effects of zinc. Comp Biochem Physiol 42:345–356

    Article  CAS  Google Scholar 

  • Day PL (1996) Genetic modification of plants: significant issues and hurdles to success. Am J Clin Nutr 63:651S–656S

    Article  PubMed  CAS  Google Scholar 

  • De Angelis M, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus 174 sanfranciscensis CB1. Int J Food Microbiol 87:259–270

    Article  PubMed  CAS  Google Scholar 

  • Dechavez RB, Serrano AE Jr, Nuñal S, Caipang CMA (2011) Production and characterization of phytase from Bacillus spp. as feed additive in aquaculture. AACL Bioflux 4:394–403

    Google Scholar 

  • Dersjant LY, Awati A, Schulze H, Partridge G (2015) Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric 95(5):878–896

    Article  CAS  Google Scholar 

  • Desphande SS, Cheryan M (1984) Effects of phytic acid, divalent cations, and their interactions on alpha-amylase activity. J Food Sci 49:516–519

    Article  Google Scholar 

  • Dischinger HC, Ullah AHJ (1992) Immobilization of Aspergillus ficuum phytase by carbohydrate moieties onto cross-linked agarose. Ann N Y Acad Sci 672:583–587

    Article  CAS  Google Scholar 

  • Doekes G, Kamminga N, Helwegen L, Heederik D (1999) Occupational IgE sensitisation to phytase, a phosphate derived from Aspergillus niger. Occup Environ Med 56:454–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dox AW, Golden R (1911) Phytase in lower fungi. J Biol Chem 10:183–186

    Google Scholar 

  • Eastwood D, Laidman D (1971) The mobilization of macronutrient elements in the germinating wheat grain. Phytochemistry 10:1275–1284

    Article  CAS  Google Scholar 

  • Ebune A, Alasheh S, Duvnjak Z (1995) Production of phytase during solid-state fermentation using Aspergillus-ficuum NRRL-3135 in canola-meal. Bioresour Technol 53(1):7–12

    Article  CAS  Google Scholar 

  • Eeckhout W, de Paepe M (1994) Total phosphorus, phytate-phosphorus and phytase activity in plant feed stuffs. Anim Feed Sci Technol 47:19–29

    Article  CAS  Google Scholar 

  • Ehrlich KC, Montalbano BG, Mullaney EJ, Dischinger HC, Ullah AHJ (1993) Identification and cloning of a second phytase gene (phyB) from Aspergillus niger (ficuum). Biochem Biophys Res Commun 195:53–57

    Article  PubMed  CAS  Google Scholar 

  • Elliott S, Chang CW, Schweingruber ME, Schaller J et al (1986) Isolation and characterization of the structural gene for secreted acid phosphatase from Schizosaccharomyces pombe. J Biol Chem 261:2936–2941

    PubMed  CAS  Google Scholar 

  • European Union (2004a) Official Journal of the European Union C 50/52, published 25/02/2004

    Google Scholar 

  • European Union (2004b) Official Journal of the European Union C 50/95, published 25/02/2004

    Google Scholar 

  • European Union (2004c) Official Journal of the European Union C 50/112, published 25/02/2004

    Google Scholar 

  • European Union (2004d) Official Journal of the European Union L 270/12, published 18/08/2004

    Google Scholar 

  • Farhat A, Chouayekh H, Ben FM, Bouchaala K, Bejar S (2008) Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme. Mol Biotechnol 40(2):127–135

    Article  PubMed  CAS  Google Scholar 

  • Findenegg GR, Nelemans JA (1993) The effect of phytase on availability of P from myo-inositol hexaphosphate (phytate) for maize roots. Plant Soil 154:189–196

    Article  CAS  Google Scholar 

  • Fleming DJ, Tucker KL, Jacques PF, Dallal GE et al (2002) Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Study cohort. Am J Clin Nutr 76:1375–1384

    Article  PubMed  CAS  Google Scholar 

  • Fredrikson M, Biot P, Larsson Alminger M, Carlsson NG, Sandberg AS (2001) Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. J Agric Food Chem 49:1208–1212

    Article  PubMed  CAS  Google Scholar 

  • Fredrikson M, Andlid T, Haikara A, Sandberg AS (2002) Phytate degradation by micro-organisms in synthetic media and pea flour. J Appl Microbiol 93:197–204

    Article  PubMed  CAS  Google Scholar 

  • Freund WD, Mayr GW, Tietz C, Schultz JE (1992) Metabolism of inositol phosphates in the protozoan Paramecium. Eur J Biochem 207:359–367

    Article  PubMed  CAS  Google Scholar 

  • Gabard KA, Jones RL (1986) Localization of phytase and acid phosphatase isoenzymes in aleurone layers of barley. Physiol Plant 67:182–192

    Article  CAS  Google Scholar 

  • Gargova S, Roshkova Z, Vancheva G (1997) Screening of fungi for phytase production. Biotechnol Lett 11:221–224

    CAS  Google Scholar 

  • Gargova S, Sariyska M (2003) Effect of culture conditions on the biosynthesis of Aspergillus niger phytase and acid phosphatase. Enzym Microb Technol 32:231–235

    Article  CAS  Google Scholar 

  • Garrett JB, Kretz KA, O’Donoghue E, Kerovuo J et al (2004) Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl Environ Microbiol 70:3041–3046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gautam P, Sabu A, Pandey A, Szakacs G, Soccol CR (2002) Microbial production of extra-cellular phytase using polystyrene as inert solid support. Bioresour Technol 83(3):229233

    Article  Google Scholar 

  • Gibson DM (1987) Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol Lett 9:305–310

    Article  CAS  Google Scholar 

  • Gibson DM, Ullah AHJ (1988) Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys 260:503–513

    Article  PubMed  CAS  Google Scholar 

  • Gibson DM, Ullah AB (1990) Phytase and their action on phytic acid in inositol metabolism in plants. Arch Biochem Biophys 262:77–92

    Google Scholar 

  • Golovan S, Wang G, Zhang J, Forsberg CW (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46:59–71

    Article  PubMed  CAS  Google Scholar 

  • Grases F, Simonet BM, Prieto RM, March JG (2001) Dietary phytate and mineral bioavailability. J Trace Elem Med Biol 15(4):221–228

    Article  PubMed  CAS  Google Scholar 

  • Greaves MP, Anderson G, Webley DM (1967) The hydrolysis of inositol phosphates by Aerobacter aerogenes. Biochim Biophys Acta 132:412–418

    Article  PubMed  CAS  Google Scholar 

  • Greiner R (2001) Properties of phytate-degrading enzymes from germinated lupine seeds (Lupinus Albus var.Amiga). Proceedings of the 4th European Conference on Grain Legumes, Cracow, Poland. p 398–399

    Google Scholar 

  • Greiner R, Konietzny U (1996) Construction of a bioreactor to produce special breakdown products of phytate. J Biotechnol 48:153–159

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44(2):125–140

    CAS  Google Scholar 

  • Greiner R, Larsson Alminger M (1999) Purification and characterization of a phytate-degrading enzyme from germinated oat (Avena sativa). J Sci Food Agric 79:1453–1460

    Article  CAS  Google Scholar 

  • Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Haller E, Konietzny U, Jany KD (1997) Purification and characterization of a phytase from Klebsiella terrigena. Arch Biochem Biophys 341:201–206

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Jany KD, Larsson Alminger M (2000) Identification and properties of myo-inositol hexakisphosphate phosphohydrolases (phytases) from barley (Hordeum vulgare). J Cereal Sci 31:127–139

    Article  CAS  Google Scholar 

  • Greiner R, Larsson Alminger M, Carlsson NG et al (2002) Enzymatic phytate degradation – a possibility to design functional foods? Poult J Food Nutr Sci 11:50–54

    CAS  Google Scholar 

  • Guerrero-Olazarán M, Rodríguez-Blanco L, Carreon-Treviño JG, Gallegos-López JA, Viader-Salvadó JM (2010) Expression of a Bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme. Appl Environ Microbiol 76(16):5601–5608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulati HK, Chadha BS, Saini HS (2007a) Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. J Ind Microbiol Biotechnol 34:91–98

    Article  PubMed  CAS  Google Scholar 

  • Gulati HK, Chadha BS, Saini HS (2007b) Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. Acta Microbiol Immunol Hung 54(2):121–138

    Article  PubMed  CAS  Google Scholar 

  • Haefner S, Knietsch A, Scholten E, Braun J et al (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597

    Article  PubMed  CAS  Google Scholar 

  • Han YW, Gallagher DJ (1987) Phosphatase production by Aspergillus ficuum. J Ind Microbiol 1:295–301

    Article  CAS  Google Scholar 

  • Han Y, Wilson DB, Lei X (1999) Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae. Appl Environ Microbiol 65(5):1915–1918

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hara A, Ebina S, Kondo A, Funagua T (1985) A new type of phytase from Typhalatifolia. Agric Biol Chem 49:3539–3544

    Article  CAS  Google Scholar 

  • Harland BF, Morris ER (1995) Phytate: a good or a bad food component. Nutr Res 15:733–754

    Article  CAS  Google Scholar 

  • Harland BF, Oberleas D (1977) A modified method for phytate analysis using an ion-exchange procedure: application to textured proteins. Cereal Chem 54:827–832

    CAS  Google Scholar 

  • Haros M, Rosell CM, Benedito C (2001) Fungal phytase as a potential bread making additive. Eur Food Res Technol 213:317–322

    Article  CAS  Google Scholar 

  • Hayes JE, Simpson RJ, Richardson AE (2000) The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil 220:165–174

    Article  CAS  Google Scholar 

  • Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatase is expressed in cotyledons of germinating soybean seedling. Plant Physiol 126:1598–1608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and itsapplication to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    Article  PubMed  CAS  Google Scholar 

  • Hemrika W, Renirie R, Dekker HL, Barnett P, Wever R (1997) From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc Natl Acad Sci USA 94:2145–2149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hengge-Aronis R (1996) Regulation of gene expression during entry into stationary phase. In: Neidhardt (ed) Escherichia coli and Salmonella: cellular and molecular biology, vol 1, 2nd edn. ASM Press, Washington, DC, pp 1497–1512

    Google Scholar 

  • Hill BE, Sutton AL, Richert BT (2009) Effects of low-phytic acid corn, low-phytic acid soybean meal, and phytase on nutrient digestibility and excretion in growing pigs. J Anim Sci 87:1518–1527

    Article  PubMed  CAS  Google Scholar 

  • Hong CY, Cheng KJ, Tseng TH, Wang CS, Liu LF, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res 13:29–39

    Article  PubMed  CAS  Google Scholar 

  • Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Houde RL, Alli I, Kermasha S (1990) Purification and characterization of canola seed (Brassica sp.) phytase. J Food Biochem 114:331–351

    Article  Google Scholar 

  • Huang J, Zhou W, Watson AM, Jan YN, Hong Y (2008) Efficient ends-out gene targeting in Drosophila. Genetics 180(1):703–707

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang HQ, Shao N, Wang YR, Luo HY, Yang PL, Zhou ZG, Zhan ZC, Yao B (2009) A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl Microbiol Biotechnol 83(2):249–259

    Article  PubMed  CAS  Google Scholar 

  • Hubel F, Beck E (1996) Maize root phytase. Plant Physiol 112:1429–1436

    Article  PubMed  PubMed Central  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K et al (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    Article  PubMed  CAS  Google Scholar 

  • Igbasan FA, Männer K, Miksch G, Borriss R, Farouk A, Simon O (2000) Comparative studies on the in vitro properties of phytases from various microbial origins. Arch Anim Nutr 53:353–373

    CAS  Google Scholar 

  • Iqbal TH, Lewis KO, Cooper BT (1994) Phytase activity in the human and rat small intestine. Gut 35:1233–1236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ireland MM, Karty JA, Quardokus EM, Reilly JP, Brun YV (2002) Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Mol Microbiol 45(4):1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Jackson JF, Linskens HF (1982) Phytic acid in Petunia hybrida pollen is hydrolysed during germination by a phytase. Acta Bot Neerlandica 315:441–447

    Article  Google Scholar 

  • Jareonkitmongkol S, Ohya M, Watanabe R, Takagi H, Nakamori S (1997) Partial purification from a soil isolates bacterium, Klebsiella oxytoca MO-3. J Ferment Bioeng 83:393–394

    Article  CAS  Google Scholar 

  • Jariwalla RJ, Sabin R, Lawson S, Herman ZS (1990) Lowering of serum cholesterol and triglycerides and modulation of divalent cations by dietary phytate. J Appl Nutr 42:18–28

    Google Scholar 

  • Jenab M, Thompson LU (2002) Role of phytic acid in cancer and other diseases. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, pp 225–248

    Google Scholar 

  • Jog SP, Garchow BG, Mehta BD, Murthy PPN (2005) Alkaline phytase from lily pollen: investigation of biochemical properties. Arch Biochem Biophys 440:133–140

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Satyanarayana T (2010) Improvement in cell-bound phytase activity of Pichia anomala by permeabilization and applicability of permeabilized cells in soymilk dephytinization. J Appl Microbiol 108:2041–2049

    PubMed  CAS  Google Scholar 

  • Kebreab E, Hansen AV, Strathe A (2012) Animal production for efficient phosphate utilization: from optimised feed to high efficiency livestock. Curr Opin Biotechnol 23:872–877

    Article  PubMed  CAS  Google Scholar 

  • Kemme PA, Jongbloed AW, Mroz Z, Beynen AC (1997) The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. J Anim Sci 75:2129–2138

    Article  PubMed  CAS  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning and sequencing of novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kerovuo J, Lappalainen I, Reinikainen T (2000) The metal dependence of Bacillus subtilis phytase. Biochem Biophys Res Commun 268:365–369

    Article  PubMed  CAS  Google Scholar 

  • Kies AK, De Jonge LH, Kemme PA, Jongbloed AW (2006) Interaction between protein, phytate, and microbial phytase: in vitro studies. J Agric Food Chem 54:1753–1758

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Godber JS, Kim HR (1999a) Culture conditions for a new phytase producing fungus. Biotechnol Lett 21:1077–1081

    Article  CAS  Google Scholar 

  • Kim HW, Kim YO, Lee JH, Kim KK, Kim YJ (2003) Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol Lett 25:1231–1234

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Simmins PH, Mullan BP, Pluske JR (2005) The effect of wheat phosphorus content and supplemental enzymes on digestibility and growth performance of weaner pigs. Anim Feed Sci Technol 118:139–152

    Article  CAS  Google Scholar 

  • Kim YO, Kim HK, Bae KS, Yu JH, Oh TK (1998a) Purification and properties of thermostable phytase from Bacillus sp. DSII. Enzym Microb Technol 22:2–7

    Article  CAS  Google Scholar 

  • Kim YO, Lee JK, Kim HK, Yu JH, Oh TK (1998b) Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its over-expression in Escherichia coli. FEMS Microbiol Lett 162:185–191

    Article  PubMed  CAS  Google Scholar 

  • Kim YO, Lee JK, Oh BC, Oh TK (1999b) High-level expression of a recombinant thermostable phytase in Bacillus subtilis. Biosci Biotechnol Biochem 63:2205–2207

    Article  PubMed  CAS  Google Scholar 

  • Kleist S, Miksch G, Hitzmann B, Arndt M, Friehs K, Flaschel E (2003) Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies. Appl Microbiol Biotechnol 61:456–462

    Article  PubMed  CAS  Google Scholar 

  • Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Tech 37(7):791–812

    Article  CAS  Google Scholar 

  • Konietzny U, Greiner R (2003) Phytic acid: nutritional impact. In: Caballero B, Trugo L, Finglas P (eds) Encyclopedia of food science and nutrition. Elsevier, London, pp 4555–4563

    Chapter  Google Scholar 

  • Konietzny U, Greiner R, Jany KD (1995) Purification and characterization of a phytases from spelt. J Food Biochem 18:165–183

    Article  CAS  Google Scholar 

  • Kornegay ET, Denbow DM, Yi Z, Ravindran V (1996) Response of broilers to graded levels of microbial phytase added to maize–soyabean meal-based-diets containing three levels of non-phytate phosphorus. Br J Nutr 75:839–852

    Article  PubMed  CAS  Google Scholar 

  • Kornegay ET, Zhang Z, Denbow DM (1999) Influence of microbial phytase supplementation of a low protein/amino acid diet on performance, ileal digestibility of protein and amino acids, and carcass measurements of finishing broilers. In: Phytase in animal nutrition and waste management, 2nd rev edn. BASF Corporation, Mount Olive, pp 557–572

    Google Scholar 

  • Kostrewa D, Wyss M, D’Arcy A, van Loon APGM (1999) Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 A resolution. J Mol Biol 288:965–974

    Article  PubMed  CAS  Google Scholar 

  • Krishna C, Nokes SE (2001) Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology. J Ind Microbiol Biotechnol 26:161–170

    Article  PubMed  CAS  Google Scholar 

  • Kuhar S, Singh N, Rana JS (2009) Isolation and statistical optimization of growth parameters for a phosphate pollution controlling NSB-10 bacteria. Proc Int Conf Changing Environ Trends and Sustainable Development, Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125001, India, Feb 9–11. p 141–144

    Google Scholar 

  • Kumar V, Sinha AK, Makkar HPS, De Boeck G, Becker K (2012) Phytate and phytase in fish utrition. J Anim Physiol Anim Nutr 96:335–364

    Article  CAS  Google Scholar 

  • Kvist S, Carlsson T, Lawther JM, DeCastro FB (2005) Process for the fractionation of cereal brans. US patent application US 20050089602

    Google Scholar 

  • Laboure AM, Gagnon J, Lescure AM (1993) Purification and characterization of a phytase (myo–inositolhexakisphosphate phosphohydrolase) accumulated in maize (Zea mays) seedlings during germination. Biochem J 295:413–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lambrechts C, Boze H, Segueilha L, Moulin G, Galzy P (1993) Influence of culture conditions on the biosynthesis of Schwanniomyces castellii phytase. Biotechnol Lett 15(4):399–404

    Article  CAS  Google Scholar 

  • Lan GQ, Abdullah N, Jalaludin S, Ho YW (2002) Optimization of carbon and nitrogen sources for phytase production by Mitsuokella jalaludinii, a new rumen bacterial species. Lett Appl Microbiol 35(2):157–161

    Article  PubMed  CAS  Google Scholar 

  • Lassen SF, Breinholt J, Østergaard PR, Brugger R et al (2001) Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, Ceriporia sp., and Trametes pubescens. Appl Environ Microbiol 67:4701–4707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehmann M, Kostrewa D, Wyss M, Brugger R, D’Arcy A, Pasamontes L (2000) From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng 13(1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Lei XG, Stahl C (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57:474–481

    Article  PubMed  CAS  Google Scholar 

  • Li J, Hegemann CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol 114:1103–1111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li R, Lu W, Gu J, Li X, Guo C, Xiao K (2011) Molecular characterization and functional analysis of OsPHY2, a phytase gene classified in histidine acid phosphatase type in rice (Oryza sativa L.). Afr J Biotechnol 10(54):11110–11123

    CAS  Google Scholar 

  • Li X, Chi Z, Liu Z, Li J, Wang X, Hirimuthugoda NY (2008) Purification and characterization of extracellular phytase from a marine yeast Kodamaea ohmeri BG3. Mar Biotechnol 10:190–197

    Article  PubMed  CAS  Google Scholar 

  • Li X, Liu Z, Chi Z, Li J, Wang X (2009) Molecular cloning, characterization, and expression of the phytase gene from marine yeast Kodamaea ohmeri BG3. Mycol Res 113:24–32

    Article  PubMed  CAS  Google Scholar 

  • Lin JJ, Dickinson DB, Ho THD (1987) Phytic acid metabolism in lily (Lilium longiflorum Thunb) pollen. Plant Physiol 83:408–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim D, Golovan S, Forsberg CW, Jia ZC (2000) Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Biol 7(2):108–113

    Article  PubMed  CAS  Google Scholar 

  • Liu BL, Jong CH, Tzeng YM (1999) Effect of immobilization on pH and thermal stability of Aspergillus ficuum phytase. Enzym Microb Technol 25:517–521

    Article  CAS  Google Scholar 

  • Liu J, Bollinger DW, Ledoux DR, Veum TL (1998) Lowering the dietary calcium to total phosphorus ratio increased phosphorus utilization in low phosphorus corn–soybean meal diets supplemented with microbial phytase for growing–finishing pigs. J Anim Sci 76:808–813

    Article  PubMed  CAS  Google Scholar 

  • Loewus F (2002) Biosynthesis of phytate in food grains and seeds. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, pp 53–61

    Google Scholar 

  • Lopez HW, Leenhardt F, Coudray C, Remesy C (2002) Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Technol 37:727–739

    Article  CAS  Google Scholar 

  • Maenz DD (2001) Enzymatic and other characteristics of phytases as they relate to their use in animal feeds. In: Bedford R, Partridge GG (eds) Enzymes in farm animal nutrition. CABI Publishing, UK, p 6184

    Google Scholar 

  • Maenz DD, Classen HL (1998) Phytase activity in the small intestinal brush-border membrane of the chicken. Poult Sci 77:557–563

    Article  PubMed  CAS  Google Scholar 

  • Maffucci T, Piccolo E, Cumashi A, Iezzi M et al (2005) Inhibition of the phosphatidylinositol-3-kinase/Akt pathway by inositol pentakisphosphate results in antiangiogenic and antitumor effects. Cancer Res 65:8339–8349

    Article  PubMed  CAS  Google Scholar 

  • Mallin MA (2000) Impacts of industrial animal production on rivers and estuaries. Anim Sci 88:26–37

    Google Scholar 

  • Mandviwala TN, Khire JM (2000) Production of high activity thermostable phytase from thermotolerant phytase from thermotolerant Aspergillus niger in solid state fermentation. J Ind Microbiol Biotechnol 24:237–243

    Article  CAS  Google Scholar 

  • Maugenest S, Martinez I, Lescure AM (1997) Cloning and characterization of a cDNA encoding a maize seedling phytase. Biochem J 322:511–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maugenest S, Martinez I, Godin B, Perez P, Lescure AM (1999) Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol Biol 39:503–514

    Article  PubMed  CAS  Google Scholar 

  • McCollum EV, Hart EB (1908) On the occurrence of a phytin-splitting enzyme in animal tissue. J Biol Chem 4:497–500

    Google Scholar 

  • Miettinen-Oinonen A, Torkkeli T, Paloheimo M, Nevalainen H (1997) Overexpression of the Aspergillus niger pH 2.5 acid phosphatase gene in a heterologous host Trichoderma reesei. J Biotechnol 58:13–20

    Article  PubMed  CAS  Google Scholar 

  • Miksch G, Kleist S, Friehs K, Flaschel E (2002) Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol 59:685–694

    Article  PubMed  CAS  Google Scholar 

  • Misset O (2003) Phytase. Food Sci Technol 122:687–706

    CAS  Google Scholar 

  • Mitchell DB, Vogel K, Weimann BJ, Pasamontes L, Van Loon APGM (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143:245–252

    Article  PubMed  CAS  Google Scholar 

  • Mullaney EJ, Ullah AH (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312(1):179–184

    Article  PubMed  CAS  Google Scholar 

  • Mullaney EJ, Daly CB, Ullah AHJ (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

    Article  PubMed  CAS  Google Scholar 

  • Mullaney EJ, Daly CB, Kim T, Porres JM, Lei XG, Sethumadhavan K, Ullah AHJ (2002) Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem Biophys Res Commun 297:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Mullaney EJ, Ullah AH, Turner B, Richardson A, Mullaney E (2007) Phytases: attributes, catalytic mechanisms and applications. In: Inositol phosphates: linking agriculture and the environment. p 97–110

    Google Scholar 

  • Nagashima T, Tange T, Anazawa H (1999) Dephosphorylation of phytate by using the Aspergillus nigerphytase with a high affinity for phytate. Appl Environ Microbiol 65:4682–4684

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura Y, Fukuhara H, Sano L (2000) Secreted phytase activities of yeasts. Biosci Biotechnol Biochem 64:841–844

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Joh T, Narita K, Hayakawa T (2000) The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases from wheat bran of Triticum aestivum L. cv. Nourin 61. Biosci Biotechnol Biochem 64:995–1003

    Article  PubMed  CAS  Google Scholar 

  • Nampoothiri KM, Tomes GJ, Roopesh K, Szakacs G, Nagy V, Soccol CR, Pandey A (2004) Thermostable phytase production by thermoascus aurantiacus in submerged fermentation. Appl Biochem Biotechnol 118:205–214

    Article  PubMed  CAS  Google Scholar 

  • Nelson TS (1967) The utilization of phytate phosphorus by poultry. Poult Sci 46:862–871

    Article  PubMed  CAS  Google Scholar 

  • Oh BC, Chang BS, Park KH, Ha NC, Kim HK, Oh BH, Oh TK (2001) Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochemistry 40:9669–9676

    Article  PubMed  CAS  Google Scholar 

  • Oh BC, Choi WC, Park S, Kim YO, Oh TK (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol 63:362–372

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa T, Ebisuno S, Kitagawa M, Morimoto S, Miyazaki Y, Yasukawa S (1984) Rice bran treatment for patients with hypercalciuric stones: experimental and clinical studies. J Urol 132:1140–1145

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Szakacs G, Soccol CR, Rodriguez-Leon JA, Soccol VT (2001) Production, purification and properties of microbial phytases. Bioresour Technol 77:203–214

    Article  PubMed  CAS  Google Scholar 

  • Papagianni M, Nokes SE, Filer K (2000) Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Process Biochem 35(3–4):397–402

    Google Scholar 

  • Parkkonen T, Tervila-Wilo A, Hopeakoski-Nurminen M, Morgan A, Poutanen K, Autio K (1997) Changes in wheat microstructure following in vitro digestion. Acta Agric Scand Sect B Soil Plant Sci 47:43–47

    CAS  Google Scholar 

  • Pasamontes L, Haiker M, Wyss M, Tessier M, Loon APGM (1997) Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700

    PubMed  PubMed Central  CAS  Google Scholar 

  • Patwardhan VN (1937) The occurrence of a phytin splitting enzyme in the intestines of albino rats. Biochem Lett 31:560–564

    Article  CAS  Google Scholar 

  • Phillippy BQ (1999) Susceptibility of wheat and Aspergillus niger phytases to inactivation by gastrointestinal enzymes. J Agric Food Chem 47:1385–1388

    Article  PubMed  CAS  Google Scholar 

  • Phillipy BQ, Mullaney EJ (1997) Expression of an Aspergillus niger phytase (phyA) in Escherichia coli. J Agric Food Chem 45:3337–3342

    Article  Google Scholar 

  • Piddington CS, Houston CS, Paloheimo M, Cantrell M, Miettinen-Oinonen A, Nevalanien H (1993) The cloning and sequencing of the genes encoding phytase (phy) and pH 25 optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene 133:55–62

    Article  PubMed  CAS  Google Scholar 

  • Pinky G, Sabu A, Pandey A, Szakacs G, Soccol CR (2002) Microbial production of extra-cellular phytase using polystyrene as inert solid support. Bioresour Technol 83(3):229–233

    Article  Google Scholar 

  • Pomar C, Gagne F, Matte JJ, Barnett G, Jondreville C (2008) The effect of microbial phytase on true and apparent ileal amino acid digestibilities in growing-finishing pigs. J Anim Sci 86:1598–1608

    Article  PubMed  CAS  Google Scholar 

  • Posternak T (1965) The cyclilols. Hermann, Paris

    Google Scholar 

  • Powar VK, Jagannathan V (1982) Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol 151:1102–1108

    PubMed  PubMed Central  CAS  Google Scholar 

  • Promdonkoy P, Tang K, Sornlake W, Harnpicharnchai P et al (2009) Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiol Lett 290(1):18–24

    Article  PubMed  CAS  Google Scholar 

  • Quan CH, Zhang LH, Wang YJ, Ohta Y (2001) Production of phytase in a low phosphate medium by a novel yeast Candida krusei. J Biosci Bioeng 92:154–160

    Article  PubMed  CAS  Google Scholar 

  • Quan CH, Zhang LH, Wang YJ, Ohta Y (2002) Purification and properties of a phytase from Candida krusei WZ-001. J Biosci Bioeng 94:111–119

    Google Scholar 

  • Quan CS, Tian WJ, Fan SD, Kikuchi YI (2004) Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. J Biosci Bioeng 97:260–266

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra P, Halami PM (2009) Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. Int J Food Microbiol 133(1–2):129–134

    Article  PubMed  CAS  Google Scholar 

  • Ramachandaran S, Krishnan R, Nampoothiri KM, Szackacs G, Pandey A (2005) Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oil cakes as substrates. Process Biochem 40(5):1749–1754

    Article  CAS  Google Scholar 

  • Rao DE, Rao KV, Reddy VD (2008) Cloning and expression of Bacillus phytase gene (phy) in Escherichia coli and recovery of active enzyme from the inclusion bodies. J Appl Microbiol 105(4):1128–1137

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S, Leva E, Guest GM (1941) Phytase in plasma and erythrocytes of vertebrates. Biol Chem 139:621–632

    CAS  Google Scholar 

  • Ravindran V, Bryden WL, Kornegay ET (1995) Phytases: occurrence, bioavailability and implications in poultry nutrition. Poult Avian Biol Rev 6:125–143

    Google Scholar 

  • Ravindran V, Selle PH, Bryden WL (1999) Effects of phytase supplementation, individually and in combination, on the nutritive value of wheat and barley. Poult Sci 78:1588–1595

    Article  PubMed  CAS  Google Scholar 

  • Reddy NR (2002) Occurrence, distribution, content, and dietary intake of phytate. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, pp 25–51

    Google Scholar 

  • Reddy NR, Pierson MD (1994) Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res Int 27(3):281–290

    Article  CAS  Google Scholar 

  • Reddy NR, Sathe SK, Salunkhe DK (1982) Phytases in legumes and cereals. Adv Food Res 82:1–92

    Google Scholar 

  • Richardson AE, Barea J, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 339:305–339

    Article  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23:397–405

    Article  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    Article  PubMed  CAS  Google Scholar 

  • Richardson NL, Higgs DA, Beames RM, McBride JR (1985) Influence of dietary calcium, phosphorus, zinc, and sodium phytate level on cataract incidence, growth and histopathology in juvenile Chinook salmon (Oncorhynchus tshawytscha). J Nutr 115:553–567

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez E, Han Y, Lei XG (1999) Cloning, sequencing and expression of an Escherichia coli phosphates/phytase gene (appA2) isolated from pig colon. Biochem Biophys Res Commun 257:117–123

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez E, Mullaney EJ, Lei XG (2000a) Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem Biophys Res Commun 268:373–378

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez E, Wood ZA, Karplus PA, Lei XG (2000b) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys 382(1):105–112

    Article  PubMed  CAS  Google Scholar 

  • Roopesh K, Ramachandran S, Nampoothiri KM, Szakacs G, Pandey A (2005) Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresour Technol 97(3):506–511

    Article  PubMed  CAS  Google Scholar 

  • Roy T, Banerjee G, Dan SK, Ray AK (2013) Optimization of fermentation conditions for phytase production by two strains of Bacillus licheniformis (LF1 and LH1) isolated from the intestine of Rohu, Labeo rohita (Hamilton). In: Proceedings of the zoological society, vol 66. Springer-Verlag, p 27–35

    Article  Google Scholar 

  • Ruf JC, Ciavatti M, Gustafsson T, Renaud S (1991) Effects of PP-56 and vitamin E on platelet hyperaggregability, fatty acid abnormalities, and clinical manifestations in streptozotocin-induced diabetis rats. Diabetis 40:233–239

    Article  CAS  Google Scholar 

  • Rumsey GL (1993) Fish meal and alternate source of protein in fish feeds: update 1993. Fisheries 18:14–19

    Article  Google Scholar 

  • Sabu A, Sarita S, Pandey A, Bogar B, Szakacs G, Soccol CR (2002) Solid-state fermentation for production of phytase by Rhizopus oligosporus. Appl Biochem Biotechnol 102–103:251–260

    Article  PubMed  Google Scholar 

  • Sajidan A, Farouk A, Greiner R, Jungblut P, Müller EC, Borriss R (2004) Molecular and physiological characterization of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118

    Article  PubMed  CAS  Google Scholar 

  • Sandberg AS, Brune M, Carlsson NG, Hallberg L, Skoglund E, Rossander-Hulthen L (1999) Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am J Clin Nutr 70:240–246

    Article  PubMed  CAS  Google Scholar 

  • Sands JS, Ragland D, Wilcox JR, Adeola O (2003) Relative bioavailability of phosphorus in low-phytate soybean meal for broiler chicks. Can J Anim Sci 83:95–100

    Article  CAS  Google Scholar 

  • Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38

    Article  CAS  Google Scholar 

  • Sartirana ML, Bianchetti R (1967) The effect of phosphate on the development of phytase in the wheat embryo. Physiol Plant 20:1066–1075

    Article  CAS  Google Scholar 

  • Scott JJ, Loewus FA (1986) A calcium-activated phytase from pollen of Lilium longiflorum. Plant Physiol 82:333–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sebastian S, Touchburn SP, Chavez ER (1998) Implications of phytic acid and supplemental microbial phytase in poultry nutrition: a review. World Poult Sci J 54:27–47

    Article  Google Scholar 

  • Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P (1992) Purification and properties of the phytase from chwanniomyces castellii. J Ferment Bioeng 74:7–11

    Article  CAS  Google Scholar 

  • Selle PH, Ravindran V (2008) Phytate degrading enzymes in pig nutrition. Livest Sci 113:99–122

    Article  Google Scholar 

  • Selle PH, Ravindran V, Caldwell RA, Bryden WL (2003) Phytate and phytase: consequences for protein utilization. Nutr Res Rev 13:255–278

    Article  Google Scholar 

  • Shah V, Parekh LJ (1990) Phytase from Klebsiella sp. PG-2- purification and properties. Indian J Biochem Biophys 27:98–102

    PubMed  CAS  Google Scholar 

  • Shamsuddin AM, Baten A, Lalwani ND (1992) Effects of inositol hexaphosphate on growth and differentiation in K-56 erythroleukemia cell line. Cancer Lett 64:195–202

    Article  PubMed  CAS  Google Scholar 

  • Shao N, Huang H, Meng K (2008) Cloning, expression, and characterization of a new phytase from the phytopathogenic bacterium Pectobacterium wasabiae DSMZ 18074. J Microbiol Biotechnol 18(7):1221–1226

    PubMed  CAS  Google Scholar 

  • Shears SB (1998) The versatility of inositol phosphates as cellular signals. Biochim Biophys Acta 1436:49–67

    Article  PubMed  CAS  Google Scholar 

  • Shieh TR, Ware JH (1968) Survey of microorganisms for the production of extracellular phytase. Appl Microbiol 16:1348–1351

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shieh TL, Wodzlnski LJ, Ware JH (1969) Regulation of the formation of acid phosphatase by inorganic phosphate in Aspergillus ficuum. J Bacteriol 100:1161–1165

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shimizu M (1992) Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Biosci Biotechnol Biochem 56:1266–1269

    Article  CAS  Google Scholar 

  • Shimizu M (1993) Purification and characterization of phytase and acid-phosphatase produced by Aspergillus-oryzae K1. Biosci Biotechnol Biochem 57(8):1364–1365

    Article  CAS  Google Scholar 

  • Shivanna GB, Venkateshwaran G (2014) Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation. Sci World J 2014:392615

    Article  CAS  Google Scholar 

  • Simon O, Igbasan F (2002) In vitro properties of phytase from various microbial origins. Int J Food Sci Technol 37:813–822

    Article  CAS  Google Scholar 

  • Simons PCM, Versteegh HAJ, Jongbloed AW et al (1990) Improvement of phosphorus availability by microbial phytase in broilers Schwanniomyces castellii and pigs. Brit J Nutr 64:525–540

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6(3):69–87

    CAS  Google Scholar 

  • Singh B, Satyanarayana T (2006) A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. J Appl Microbial 101(2):344–352

    Article  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2008) A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. J Appl Microbiol 101(2):344–352

    Article  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2010) Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Appl Biochem Biotechnol 160(5):1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17(2):93–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh N, Dahiya S, Poonia S (2008) Phytase: application in food and feed industries. Proc. National Seminar on Food Safety and Quality held at Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar-125001, Haryana, India. p 161–166

    Google Scholar 

  • Siren M, Linne L, Persson L (1991) Pharmacological effects of d-myo-inositol-1,2,6-trisphosphate. In: Reitz AB (ed) Inositol phosphates and derivatives. Synthesis, biochemistry and therapeutic potential. American Chemical Society, Washington, DC, pp 103–110

    Chapter  Google Scholar 

  • Skoglund E, Carlsson NG, Sandberg AS (1997) Determination of isomers of inositol mono to hexaphosphates in selected foods and intestinal contents using high-performance ion chromatography. J Agric Food Chem 45:431–436

    Article  CAS  Google Scholar 

  • Soni SK, Khire JM (2007) Production and partial characterization of two types of phytase from Aspergillus niger NCIM 563 under submerged fermentation conditions. World J Microbiol Biotechnol 23:1585–1593

    Article  CAS  Google Scholar 

  • Spitzer LS, Philips PH (1972) Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf and man. Biochim Biophys Acta 268:442–452

    Article  Google Scholar 

  • Sreeramulu G, Srinivasa DS, Nand K, Joseph R (1996) Lactobacillus amylovorus as a phytase producer in submerged culture. Lett Appl Microbiol 23:385–388

    Article  CAS  Google Scholar 

  • Srivastava BIS (1964) The effect of gibberellic acid on ribonuclease and phytase activity of germinating barley seeds. Can J Bot 42:1303–1305

    Article  Google Scholar 

  • Stockmann C, Losen M, Dahlems U, Knocke C, Gellissen G, Buchs J (2003) Effect of oxygen supply on passaging, stabilising and screening of recombinant Hansenula polymorpha production strains in test tube cultures. FEMS Yeast Res 2:195–205

    Article  CAS  Google Scholar 

  • Sunita K, Kim YO, Lee JK, Oh TK (2000) Statistical optimization of seed and induction conditions to enhance phytase production by recombinant Escherichia coli. Biochem Eng J 5:51–56

    Article  Google Scholar 

  • Sunitha K, Lee JK, Oh TK (1999) Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess Eng 21:477–481

    CAS  Google Scholar 

  • Sutardi M, Buckle KA (1988) Characterization of extra and intracellular phytase from Rhizopus oligosporus used in tempeh production. Int J Food Microbiol 6:67–69

    Article  PubMed  CAS  Google Scholar 

  • Suzuki U, Yoshimura K, Takaishi M (1907) Ueber ein enzym “Phytase” das “Anhydro-oxy-methylen diphosphorsaure” spaltet. Tokyo Imp Univ Coll Agric Bull 7:503–512

    Google Scholar 

  • Takanobu H (2002) Novel functions and applications of trehalose. Pure Appl Chem 74:1263–1269

    Article  Google Scholar 

  • Tambe SM, Kaklij GS, Kelkar SM, Parekh LJ (1994) Two distinct molecular forms of phytase from Klebsiella aerogenes: evidence for unusually small active enzyme peptide. J Ferment Bioeng 77:23–27

    Article  CAS  Google Scholar 

  • Tomschy A, Brugger R, Lehmann M, Svendsen A, Vogel K, Kostrewa D (2002) Engineering of phytase for improved activity at low pH. Appl Environ Microbiol 68:1907–1913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Touati E, Danchin A (1987) The structure of the promoter and amino terminal region of the pH 2.5 acid phosphatase structural gene (appA) of Escherichia coli-a negative control of transcription mediated by cyclic-AMP. Biochimie 69:215–221

    Article  PubMed  CAS  Google Scholar 

  • Tran TT, Mamo G, Mattiasson B, Hatti-Kaul R (2010) A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. J Ind Microbiol Biotechnol 37:279–287

    Article  PubMed  CAS  Google Scholar 

  • Tran TT, Hatti-Kaul R, Dalsgaard S, Yu S (2011) A simple and fast kinetic assay for phytases using phytic acid–protein complex as substrate. Anal Biochem 410:177–184

    Article  PubMed  CAS  Google Scholar 

  • Tseng YH, Fang TJ, Tseng SM (2000) Isolation and characterization of a novel phytase from Penicillium simplicissimum. Folia Microbiol 45:121–127

    Article  CAS  Google Scholar 

  • Tyagi PK, Verma SVS (1998) Phytate phosphorus content of some common poultry feed stuffs. Indian J Poult Sci 33:86–88

    Google Scholar 

  • Tye AJ, Siu FKY, Leung TYC, Lim BL (2002) Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol 59:190–197

    Article  PubMed  CAS  Google Scholar 

  • Ullah AHJ (1988) Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum. Prep Biochem 18:443–458

    PubMed  CAS  Google Scholar 

  • Ullah AHJ, Cummins BJ (1987) Purification, N-terminal amino acid sequence and characterisation of pH 2.5 optimum acid phosphatases (E.C.3.1.3.2) from Aspergillus ficuum. Prep Biochem 17:397–422

    PubMed  CAS  Google Scholar 

  • Ullah AHJ, Cummins BJ (1988) Aspergillus ficuum extracellular pH 6.0 optimum acid phosphatase: purification, N-terminal amino acid sequence and biochemical characterization. Prep Biochem 18:37–65

    PubMed  CAS  Google Scholar 

  • Ullah AHJ, Dischinger HC (1993) Aspergillus ficuum phytase: complete primary structure elucidation by chemical sequencing. Biochem Biophys Res Commun 192:747–753

    Article  PubMed  CAS  Google Scholar 

  • Ullah AHJ, Gibson DM (1987) Extracellular phytase (E.C.3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep Biochem 17:63–91

    PubMed  CAS  Google Scholar 

  • Ullah AHJ, Mullaney EJ (1996) Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase. Biochem Biophys Res Commun 227:311–317

    Article  PubMed  CAS  Google Scholar 

  • Ullah AHJ, Phillippy BQ (1994) Substrate selectivity in Aspergillus ficuum phytase and acid phosphatases using myo-inositol phosphates. J Agric Food Chem 42:423–425

    Article  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K (2003) PhyA gene product of Aspergillus ficuum and Peniophora lycii produces dissimilar phytases. Biochem Biophy Res Commun 303:463–468

    Article  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin- Phillips S (2003) Fungal phyAgene expressed in potato leaves produces active and stable phytase. Biochem Biophys Res Commun 306:603–609

    Article  PubMed  CAS  Google Scholar 

  • Van Etten RL, Davidson R, Stevis PE, MacArthur H, Moore DL (1991) Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. J Biol Chem 266:2313–2319

    PubMed  Google Scholar 

  • Van Hartingsveldt W (1993) Cloning, characterization and over expression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 127:87–94

    Article  PubMed  Google Scholar 

  • Vats P, Banerjee UC (2002) Studies on the production of phytase by a newly isolated strain of Aspergillus nigervan teighamobtained from rotten wood logs. Process Biochem 38:211–217

    Article  CAS  Google Scholar 

  • Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositol hexakis phosphate phosphohydrolases): an overview. Enzym Microb Technol 35:3–14

    Article  CAS  Google Scholar 

  • Vats P, Banerjee UC (2005) Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J Ind Microbiol Biotechnol 32:141–147

    Article  PubMed  CAS  Google Scholar 

  • Veum TL, Ellersieck MR (2008) Effect of low doses of Aspergillus niger phytase on growth performance, bone strength, and nutrient absorption and excretion by growing and finishing swine fed corn-soybean meal diets deficient in available phosphorus and calcium. J Anim Sci 86:858–870

    Article  PubMed  CAS  Google Scholar 

  • Veum TL, Ledoux DR, Raboy V, Ertl DS (2001) Low-phytic acid corn improves nutrient utilization for growing pigs. J Anim Sci 79:2873–2880

    Article  PubMed  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2001) Phytase production by the yeast, Pichia anomala. Biotechnol Lett 23(7):551–554

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2002) Purification and characterization of a thermostable and acid-stable phytase from Pichia anomala. World J Microbiol Biotechnol 18:687–691

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–60

    Article  PubMed  CAS  Google Scholar 

  • Vohra A, Rastogi SK, Satyanarayana T (2006) Amelioration in growth and phosphorus assimilation of poultry birds using cell-bound phytase of Pichia anomala. World J Microbiol Biotechnol 22:553–558

    Article  CAS  Google Scholar 

  • Vucenik I, Shamsuddin AM (2003) Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. J Nutr 133:3778–3784

    Article  Google Scholar 

  • Wodzinski RJ, Ullah AHJ (1996) Phytase. Adv Appl Microbiol 42:263–303

    Article  PubMed  CAS  Google Scholar 

  • Woyengo TA, Nyachoti CM (2013) Review: anti-nutritional effects of phytic acid in diets for pigs and poultry current knowledge and directions for future research. Can J Anim Sci 93:921

    Article  Google Scholar 

  • Wyss M, Brugger R, Kronenberger A, Remy R et al (1999) Biochemical characterization of fungal phytases (myo-inositolhexakisphosphate- phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wyss M, Pasamontes L, Remy R, Kohler J, Kusznir E, Gadient M, Muller F, van Loon APGM (1998) Comparison of the thermostability properties of three acid phosphatases from molds: aspergillus fumigatus phytase, A. nigerphytase, and A. nigerpH 2.5 acid phosphatase. Appl Environ Microbiol 64:4446–4451

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xavier EG, Cromwell GL, Lindemann MD (2003) Phytase additions to conventional orlow-phytate corn-soybean meal diets on phosphorus balance in growing pigs. J Anim Sci 81(1):250–258

    Google Scholar 

  • Xiao K, Harrison M, Wang ZY (2005) Transgenic expression of a novel M. truncatula phytase gene results in improving acquisition of organic phosphorus by Arabidopsis. Planta 222:27–36

    Article  PubMed  CAS  Google Scholar 

  • Xiong AS, Yao QH, Peng RH, Zhang Z, Xu F, Liu JG, Han PL, Chen JM (2006) High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol 72(5):1039–1047

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Minoda Y, Yamada K (1972) Chemical and physicochemical properties of phytase from Aspergillus terreus. Agric Biol Chem 36:2097–2103

    Article  CAS  Google Scholar 

  • Yang G, Shamsuddin AM (1995) IP-6-induced growth inhibition and differentiation of HT-29 human colon cancer cells: involvement of intracellular inositol phosphates. Anticancer Res 15:2479–2488

    PubMed  CAS  Google Scholar 

  • Yang WJ, Matsuda Y, Sano S, Masutani H, Nakagawa H (1991) Purification and characterization of phytase from rat intestinal mucosa. Biochim Biophys Acta 1075:75–82

    Article  PubMed  CAS  Google Scholar 

  • Yanke LJ, Bae HD, Selinger LB, Cheng KJ (1998) Phytase activity of anaerobic ruminal bacteria. Microbiology 144:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Yao B, Thang C, Wang J, Fan Y (1998) Recombinant Pichia pastoris over expressing bioactive phytase. Sci Chin 41:330–336

    Article  CAS  Google Scholar 

  • Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Yoon SJ, Choi YJ, Min HK, Cho KK, Kim JW, Lee SC, Jung YH (1996) Isolation and identification of phytase producing bacterium. Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzym Microb Technol 18:449–454

    Article  CAS  Google Scholar 

  • Yu S, Cowieson A, Gilbert C, Plumstead P, Dalsgaard S (2012) Interactions of phytate andmyo-inositol phosphate esters (IP1-5) including IP5 isomers with dietary protein and iron and inhibition of pepsin. J Anim Sci 90:1824–1832

    Article  PubMed  CAS  Google Scholar 

  • Zamudio M, Gonzalez A, Bastarrachea F (2002) Regulation of Raoultella terrigena comb.nov. phytase expression. Can J Microbiol 48:71–81

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Yao B, Zhou WH, Fan ZY (2001) Advances in microbial phytase research. J Aqua Chin 15:87

    Google Scholar 

  • Zhang S, Reddy MS, Kokalis Burelle N, Wells LW (2001) Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth-promoting rhizo bacteria and chemical elicitors. Plant Dis 85:879–884

    Article  CAS  Google Scholar 

  • Zyla M, Mika B, Stodolak A, Wikiera J, Koreleski S, Swiatkiewicz (2004) Towards complete dephosphorylation and total conversion of phytates in poultry feed. Poult Sci 83:1175–1186

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Haryana State Council for Science & Technology under the R&D scheme, UGC-SAP, DBT-HRD programme, DBT-BIF and DST-FIST, New Delhi.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Kuhar, S., Priya, K., Jaryal, R., Yadav, R. (2018). Phytase: The Feed Enzyme, an Overview. In: Gahlawat, S., Duhan, J., Salar, R., Siwach, P., Kumar, S., Kaur, P. (eds) Advances in Animal Biotechnology and its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4702-2_17

Download citation

Publish with us

Policies and ethics