Skip to main content

Limiting Phase Trajectories and the Emergence of Autoresonance in Anharmonic Oscillators

  • Chapter
  • First Online:
Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

  • 604 Accesses

Abstract

As mentioned above, resonance energy transfer represents one of the most effective ways of the response enhancement for a broad range of physical and engineering systems. In this chapter, the notion of resonance energy transfer is extended to the oscillators subjected to harmonic forcing with a slowly varying frequency. We investigate capture into resonance of a Klein–Gordon chain of identical linearly coupled Duffing oscillators excited by a harmonic force with a slowly varying frequency applied at an edge of the chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Dover, New York (1966)

    MATH  Google Scholar 

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Barth, I., Friedland, L.: Two-photon ladder climbing and transition to autoresonance in a chirped oscillator. Phys. Rev. A 87(1–4), 053420 (2013)

    Article  Google Scholar 

  • Ben-David, O., Assaf, M., Fineberg, J., Meerson, B.: Experimental study of parametric autoresonance in Faraday waves. Phys. Rev. Lett. 96(1–4), 154503 (2006)

    Article  Google Scholar 

  • Bohm, D., Foldy, L.L.: Theory of the synchro-cyclotron. Phys. Rev. 72, 649–661 (1947)

    Article  Google Scholar 

  • ChacĂłn, R.: Energy-based theory of autoresonance phenomena: application to duffing-like systems. Europhys. Lett. 70, 56–62 (2005)

    Article  MathSciNet  Google Scholar 

  • Dodin, I.Y., Fisch, N.J.: Adiabatic nonlinear waves with trapped particles. III. Wave dynamics. Phys. Plasmas 19, 012104 (2012)

    Article  Google Scholar 

  • Friedland L.: http://www.phys.huji.ac.il/~lazar/

  • Friedland, L.: Efficient capture of nonlinear oscillations into resonance. J. Phys. A: Math. Theor. 41(1–8), 415101 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)

    MATH  Google Scholar 

  • Kalyakin, L.A.: Asymptotic analysis of autoresonance models. Russ. Math. Surv. 63, 791–857 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kivshar, Y.S.: Intrinsic localized modes as solitons with a compact support. Phys. Rev. E 48, R43–R45 (1993)

    Article  Google Scholar 

  • Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers, 2nd edn. Dover Publications, New York (2000)

    MATH  Google Scholar 

  • Kovaleva A.: Resonance energy transport in an oscillator chain. http://arXiv:1501.00552. (2015)

    Google Scholar 

  • Kovaleva, A., Manevitch, L.I.: Classical analog of quasilinear Landau-Zener tunneling. Phys. Rev. E. 85(1–8), 016202 (2012)

    Article  Google Scholar 

  • Kovaleva, A., Manevitch, L.I.: Resonance energy transport and exchange in oscillator arrays. Phys. Rev. E 88(1–10), 022904 (2013a)

    Article  Google Scholar 

  • Kovaleva, A., Manevitch, L.I.: Emergence and stability of autoresonance in nonlinear oscillators. Cybern. Phys. 2, 25–30 (2013b)

    Google Scholar 

  • Kovaleva, A., Manevitch, L.I.: Limiting phase trajectories and emergence of autoresonance in nonlinear oscillators. Phys. Rev. E 88(1–6), 024901 (2013c)

    Article  Google Scholar 

  • Kovaleva, A., Manevitch, L.I.: Autoresonance energy transfer versus localization in weakly coupled oscillators. Phys D Nonlinear Phenom 320, 1–8 (2016)

    Article  MATH  Google Scholar 

  • Kovaleva, A., Manevitch, L.I., Manevitch, E.L.: Intense energy transfer and superharmonic resonance in a system of two coupled oscillators. Phys. Rev. E 81(1–12), 056215 (2010)

    Article  MATH  Google Scholar 

  • Marcus, G., Friedland, L., Zigler, A.: From quantum ladder climbing to classical autoresonance. Phys. Rev. A 69(1–5), 013407 (2004)

    Article  Google Scholar 

  • McMillan, E.M.: The synchrotron—a proposed high energy particle accelerator. Phys. Rev. 68, 143–144 (1945)

    Article  Google Scholar 

  • Murch, K.W., Vijay, R., Barth, I., Naaman, O., Aumentado, J., Friedland, L., Siddiqi, I.: Quantum fluctuations in the chirped pendulum. Nat. Phys. 7, 105–108 (2011)

    Article  Google Scholar 

  • Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-VCH, Weinheim (2004)

    MATH  Google Scholar 

  • Neishtadt, A.I.: Passage through a separatrix in a resonance problem with slowly varying parameter. J. Appl. Math. Mech. 39, 594–605 (1975)

    Article  MathSciNet  Google Scholar 

  • Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  • Shalibo, Y., Rofe, Y., Barth, I., Friedland, L., Bialczack, R., Martinis, J.M., Katz, N.: Quantum and classical chirps in an anharmonic oscillator. Phys. Rev. Lett. 108(1–5), 037701 (2012)

    Article  Google Scholar 

  • Veksler, V.I.: Some new methods of acceleration of relativistic particles. ComptesRendus (Dokaldy)de l’Academie Sciences de l’URSS 43, 329–331 (1944)

    Google Scholar 

  • Zelenyi, L.M., Neishtadt, A.I., Artemyev, A.V., Vainchtein, D.L., Malova, H.V.: Quasiadiabatic dynamics of charged particles in a space plasma. Physics-Uspekhi 56, 347–394 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid I. Manevitch .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Manevitch, L.I., Kovaleva, A., Smirnov, V., Starosvetsky, Y. (2018). Limiting Phase Trajectories and the Emergence of Autoresonance in Anharmonic Oscillators. In: Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures. Foundations of Engineering Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-10-4666-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4666-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4665-0

  • Online ISBN: 978-981-10-4666-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics