Advertisement

Limiting Phase Trajectories and the Emergence of Autoresonance in Anharmonic Oscillators

  • Leonid I. ManevitchEmail author
  • Agnessa Kovaleva
  • Valeri Smirnov
  • Yuli Starosvetsky
Chapter
Part of the Foundations of Engineering Mechanics book series (FOUNDATIONS)

Abstract

As mentioned above, resonance energy transfer represents one of the most effective ways of the response enhancement for a broad range of physical and engineering systems. In this chapter, the notion of resonance energy transfer is extended to the oscillators subjected to harmonic forcing with a slowly varying frequency. We investigate capture into resonance of a Klein–Gordon chain of identical linearly coupled Duffing oscillators excited by a harmonic force with a slowly varying frequency applied at an edge of the chain.

References

  1. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Dover, New York (1966)zbMATHGoogle Scholar
  2. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  3. Barth, I., Friedland, L.: Two-photon ladder climbing and transition to autoresonance in a chirped oscillator. Phys. Rev. A 87(1–4), 053420 (2013)CrossRefGoogle Scholar
  4. Ben-David, O., Assaf, M., Fineberg, J., Meerson, B.: Experimental study of parametric autoresonance in Faraday waves. Phys. Rev. Lett. 96(1–4), 154503 (2006)CrossRefGoogle Scholar
  5. Bohm, D., Foldy, L.L.: Theory of the synchro-cyclotron. Phys. Rev. 72, 649–661 (1947)CrossRefGoogle Scholar
  6. Chacón, R.: Energy-based theory of autoresonance phenomena: application to duffing-like systems. Europhys. Lett. 70, 56–62 (2005)MathSciNetCrossRefGoogle Scholar
  7. Dodin, I.Y., Fisch, N.J.: Adiabatic nonlinear waves with trapped particles. III. Wave dynamics. Phys. Plasmas 19, 012104 (2012)CrossRefGoogle Scholar
  8. Friedland, L.: Efficient capture of nonlinear oscillations into resonance. J. Phys. A: Math. Theor. 41(1–8), 415101 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)zbMATHGoogle Scholar
  10. Kalyakin, L.A.: Asymptotic analysis of autoresonance models. Russ. Math. Surv. 63, 791–857 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Kivshar, Y.S.: Intrinsic localized modes as solitons with a compact support. Phys. Rev. E 48, R43–R45 (1993)CrossRefGoogle Scholar
  12. Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers, 2nd edn. Dover Publications, New York (2000)zbMATHGoogle Scholar
  13. Kovaleva A.: Resonance energy transport in an oscillator chain. http://arXiv:1501.00552. (2015)Google Scholar
  14. Kovaleva, A., Manevitch, L.I.: Classical analog of quasilinear Landau-Zener tunneling. Phys. Rev. E. 85(1–8), 016202 (2012)CrossRefGoogle Scholar
  15. Kovaleva, A., Manevitch, L.I.: Resonance energy transport and exchange in oscillator arrays. Phys. Rev. E 88(1–10), 022904 (2013a)CrossRefGoogle Scholar
  16. Kovaleva, A., Manevitch, L.I.: Emergence and stability of autoresonance in nonlinear oscillators. Cybern. Phys. 2, 25–30 (2013b)Google Scholar
  17. Kovaleva, A., Manevitch, L.I.: Limiting phase trajectories and emergence of autoresonance in nonlinear oscillators. Phys. Rev. E 88(1–6), 024901 (2013c)CrossRefGoogle Scholar
  18. Kovaleva, A., Manevitch, L.I.: Autoresonance energy transfer versus localization in weakly coupled oscillators. Phys D Nonlinear Phenom 320, 1–8 (2016)CrossRefzbMATHGoogle Scholar
  19. Kovaleva, A., Manevitch, L.I., Manevitch, E.L.: Intense energy transfer and superharmonic resonance in a system of two coupled oscillators. Phys. Rev. E 81(1–12), 056215 (2010)CrossRefzbMATHGoogle Scholar
  20. Marcus, G., Friedland, L., Zigler, A.: From quantum ladder climbing to classical autoresonance. Phys. Rev. A 69(1–5), 013407 (2004)CrossRefGoogle Scholar
  21. McMillan, E.M.: The synchrotron—a proposed high energy particle accelerator. Phys. Rev. 68, 143–144 (1945)CrossRefGoogle Scholar
  22. Murch, K.W., Vijay, R., Barth, I., Naaman, O., Aumentado, J., Friedland, L., Siddiqi, I.: Quantum fluctuations in the chirped pendulum. Nat. Phys. 7, 105–108 (2011)CrossRefGoogle Scholar
  23. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-VCH, Weinheim (2004)zbMATHGoogle Scholar
  24. Neishtadt, A.I.: Passage through a separatrix in a resonance problem with slowly varying parameter. J. Appl. Math. Mech. 39, 594–605 (1975)MathSciNetCrossRefGoogle Scholar
  25. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. Springer, Berlin (2007)zbMATHGoogle Scholar
  26. Shalibo, Y., Rofe, Y., Barth, I., Friedland, L., Bialczack, R., Martinis, J.M., Katz, N.: Quantum and classical chirps in an anharmonic oscillator. Phys. Rev. Lett. 108(1–5), 037701 (2012)CrossRefGoogle Scholar
  27. Veksler, V.I.: Some new methods of acceleration of relativistic particles. ComptesRendus (Dokaldy)de l’Academie Sciences de l’URSS 43, 329–331 (1944)Google Scholar
  28. Zelenyi, L.M., Neishtadt, A.I., Artemyev, A.V., Vainchtein, D.L., Malova, H.V.: Quasiadiabatic dynamics of charged particles in a space plasma. Physics-Uspekhi 56, 347–394 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Leonid I. Manevitch
    • 1
    Email author
  • Agnessa Kovaleva
    • 2
  • Valeri Smirnov
    • 1
  • Yuli Starosvetsky
    • 3
  1. 1.Institute of Chemical PhysicsRussian Academy of ScienceMoscowRussia
  2. 2.Space Research InstituteRussian Academy of ScienceMoscowRussia
  3. 3.Technion—Israel Institute of TechnologyFaculty of Mechanical EngineeringHaifaIsrael

Personalised recommendations