Advertisement

Two-Particle Systems Under Conditions of Sonic Vacuum

  • Leonid I. ManevitchEmail author
  • Agnessa Kovaleva
  • Valeri Smirnov
  • Yuli Starosvetsky
Chapter
Part of the Foundations of Engineering Mechanics book series (FOUNDATIONS)

Abstract

In this section, we investigate resonance energy transport in a purely nonlinear system, wherein harmonic oscillations are prohibited by the properties of the system potential of degree higher than two.

References

  1. Manevitch, L.I.: Complex representation of dynamics of coupled nonlinear oscillators, In: Uvarova, L., Arinstein, A.E., Latyshev, A.V. (eds.), Mathematical Models of Non-Linear Excitations. Transfer, Dynamics, and Control in Condensed Systems and Other Media, pp. 269–300. Springer, New York (1999)Google Scholar
  2. Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. In: Awrejcewicz, J., Olejnik, P. (ed.) 8th Conference on Dynamical Systems-Theory and Applications (DSTA-2005), p. 289 (2005)Google Scholar
  4. Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 301 (2007)Google Scholar
  5. Manevitch, L.I., Gendelman, O.V.: Tractable Models of Solid Mechanics. Springer, Berlin (2011)Google Scholar
  6. Manevitch, L.I., Musienko, A.I.: Limiting phase trajectories and energy exchange between an anharmonic oscillator and external force. Nonlinear Dyn. 58, 633–642 (2009)CrossRefzbMATHGoogle Scholar
  7. Manevitch, L.I., Smirnov, V.V.: Localized nonlinear excitations and interchain energy exchange in the case of weak coupling. In: Awrejcewicz, Jan (ed.) Modeling, Simulation and Control of Nonlinear Engineering Dynamical System, pp. 37–47. Springer, Netherlands (2009)CrossRefGoogle Scholar
  8. Manevich, L.I., Smirnov, V.V.: Limiting phase trajectories and thermodynamics of molecular chains. Phys. Doklady 55, 324–328 (2010)CrossRefzbMATHGoogle Scholar
  9. Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains. Phys. Rev. E 82 (2010b)Google Scholar
  10. Manevitch, L.I., Smirnov, V.V.: Resonant energy exchange in nonlinear oscillatory chains and limiting phase trajectories: from small to large systems. In: Vakakis, A.F. (ed.) Advanced Nonlinear Strategies for Vibration Mitigation and System Identification, CISM Courses and Lectures, 518, pp. 207–258. Springer, New York (2010c)Google Scholar
  11. Manevitch, L.I., Vakakis, A.F.: Nonlinear oscillatory acoustic vacuum. SIAM J. Appl. Math. 74(6), 1742–1762 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Pilipchuk, V.N.: Nonlinear Dynamics: Between Linear and Impact Limits. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  13. Starosvetsky, Y., Ben-Meir, Y.: Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum. Phys. Rev. E 87, 062919 (1–18) (2013)Google Scholar
  14. Vakakis, A.F., Manevitch, L.I., Mikhlin, YuV, Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York (1996)CrossRefzbMATHGoogle Scholar
  15. Zhupiev, A.L., Mikhlin, Y.V.: Stability and branching of normal oscillation forms of non-linear systems. J. Appl. Math. Mech. 45, 328–331 (1981)CrossRefzbMATHGoogle Scholar
  16. Zhupiev, A.L., Mikhlin, Y.V.: Conditions for finiteness of the number of instability zones in the problem of normal vibrations of non-linear systems. J. Appl. Math. Mech. 486–489, 48 (1984)zbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Leonid I. Manevitch
    • 1
    Email author
  • Agnessa Kovaleva
    • 2
  • Valeri Smirnov
    • 1
  • Yuli Starosvetsky
    • 3
  1. 1.Institute of Chemical PhysicsRussian Academy of ScienceMoscowRussia
  2. 2.Space Research InstituteRussian Academy of ScienceMoscowRussia
  3. 3.Technion—Israel Institute of TechnologyFaculty of Mechanical EngineeringHaifaIsrael

Personalised recommendations