Nonlinear Vibrations of the Carbon Nanotubes

  • Leonid I. ManevitchEmail author
  • Agnessa Kovaleva
  • Valeri Smirnov
  • Yuli Starosvetsky
Part of the Foundations of Engineering Mechanics book series (FOUNDATIONS)


The previous sections concern the discrete systems, where the discreteness of the oscillation spectra is defined by the finiteness of the number of the particles forming the system under consideration.


  1. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  2. Andrianov, I., Awrejcewicz, J., Manevitch, L.: Asymptotical Mechanics of Thin-Walled Structures: A Handbook. Springer, Berlin (2004)CrossRefGoogle Scholar
  3. Baker, J., Graves-Morris, P.: Pade approximants. volume 13, 14 of Encyclopedia of Mathematics and Its Application. Addison-Wesley Publishing Co, Reading, Massachusetts (1981)Google Scholar
  4. Chang, T.: Explicit solution of the radial breathing mode frequency of single-walled carbon nanotubes. Acta Mechanica Sinica 23, 159162 (2007)CrossRefGoogle Scholar
  5. Chen, L., Kumar, S.: Thermal transport in double-wall carbon nanotubes using heat pulse. J. App. Phys. 110, 074305 (2011)Google Scholar
  6. Chico, L., Perez-Alvarez, R., Cabrillo, C.: Low-frequency phonons in carbon nanotubes: a continuum approach. Phys. Rev. B 73, 075425 (2006)CrossRefGoogle Scholar
  7. De Martino, A., Egger, R., Gogolin, A.O.: Phonon-phonon interactions and phonon damping in carbon nanotubes. Phys. Rev. B 79, 205408, 14 (2009)Google Scholar
  8. Dresselhaus, M.S., Eklund, P.C.: Phonos in carbon nanotubes. Adv. Phys. 49, 705 (2000)CrossRefGoogle Scholar
  9. Eichler, A., del Álamo Ruiz, M., Plaza, J.A., Bachtold, A.: Strong coupling between mechanical modes in a nanotube resonator, Phys. Rev. Lett. 109, 025503 (2012)Google Scholar
  10. Gambetta, A., Maanzoni, C., Menna, E., Meneghetti, M., Cerullo, G., Lanzani, G., Tretiak, S., Piryatinski, A., Saxena, A., Martin, R.L., Bishop, A.R.: Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes. Nat. Phys. 2, 616–620 (2006)Google Scholar
  11. Ghavanloo, E., Fazelzadeh, S.: Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect. Appl. Math. Model. 36, 4988 (2012)CrossRefGoogle Scholar
  12. Gibson, R.F., Ayorinde, E.O., Wen, Y.-F.: Vibrations of carbon nanotubes and their composites: a review. Comp. Sci. Tech. 67, 1–28 (2007)CrossRefGoogle Scholar
  13. Greaney, P.A., Grossman, J.C.: Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes. Phys. Rev. Lett. 98, 125503 (2007)CrossRefGoogle Scholar
  14. Greaney, P.A., Lani, G., Cicero, G., Grossman, J.C.: Anomalous dissipation in single-walled carbon nanotube resonators. Nano Lett. 9, 3699–3703 (2009)Google Scholar
  15. Harik, V.M.: Mechanics of carbon nanotubes: applicability of the continuum-beam models. Comp. Mater. Sci. 24, 328–342 (2002)CrossRefGoogle Scholar
  16. Harik, V.M., Gates, T.S., Nemeth, M.P., Applicabolity of the continuum-shell theories to the mechanics of carbon nanotubes, NASA/CR-2002-211460. ICASE Rep. No 2002-7, ICASE, NASA Langley Research Center, Hampton, Virginia (2002)Google Scholar
  17. Hu, Y.G., Liew, K.M., Wang, Q., Yakobson, B.I.: Nonlocal shell model for elastic wave propogation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solid. 56, 3475–3485 (2008)CrossRefzbMATHGoogle Scholar
  18. Hu, Y.-G., Liew, K., Wang, Q.: Modeling of vibrations of carbon nanotubes. Procedia Eng. 31, 343–347 (2012)CrossRefGoogle Scholar
  19. Jiang, J.-W., Wang, J.-S., Li, B.: Elastic and nonlinear stiffness of graphene: a simple approach. Phys. Rev. B 81, 073405 (2010)CrossRefGoogle Scholar
  20. Kahn, D., Kim, K.W., Stroscio, M.A.: Quantized vibrational modes of nanospheres and nanotubes in the elastic continuum model, J. Appl. Phys. 89, 5107 (2001)Google Scholar
  21. Kaplunov, J., Manevitch, L.I., Smirnov, V.V.: Vibrations of an elastic cylindrical shell near the lowest cut-off frequency. Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 472 (2016)Google Scholar
  22. Kürti, J., Źolyomi, V., Kertesz, M., Sun, G.: The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour, New J. Phys. 5(1–21), 125 (2003)Google Scholar
  23. Lawler, H.M., Areshkin, D., Mintmire, J.W., White, C.T.: Radial-breathing mode frequencies for single-walled carbon nanotubes of arbitrary chirality: first-principles calculations. Phys. Rev. B 72, 233403 (2005)CrossRefGoogle Scholar
  24. Lebedkin, S., Arnold, K., Kiowski, O., Hennrich, F., Kappes, M.M.: Raman study of individually dispersed single-walled carbon nanotubes under pressure. Phys. Rev. B 73, 094109 (2006)CrossRefGoogle Scholar
  25. Li, B., Wang, J., Wang, L., Zhang, G.: Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels. Chaos 15, 015121 (2005)CrossRefGoogle Scholar
  26. Liew, K., Wang, Q.: Analysis of wave propagation in carbon nanotubes via elastic shell theories. J. Eng. Sci. 45, 227 (2007)CrossRefGoogle Scholar
  27. Mahan, G.D.: Oscillations of a thin hollow cylinder: carbon nanotubes. Phys. Rev. B 65, 235402 (2002)CrossRefGoogle Scholar
  28. Mahdavi, M., Jiang, L.Y., Sun, X.: Nonlinear vibration of a double-walled carbon nanotube embedded in a polymer matrix. Physica E Low-dimensional Syst. Nanostruct. 43, 1813–1819 (2011)CrossRefGoogle Scholar
  29. Manevitch, L.I., Smirnov, V.V.: Resonant energy exchange in nonlinear oscillatory chains and limiting phase trajectories: from small to large system. volume 518 of CISM Courses and Lectures, Springer, New York, pp. 207–258 (2010a)Google Scholar
  30. Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains, Phys. Rev. E 82, 036602 (2010b)Google Scholar
  31. Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and thermodynamics of molecular chains. Dokl. Phys. 55, 324 (2010c)Google Scholar
  32. Manevitch, L.I., Smirnov, V.V.: Semi-inverse method in the nonlinear dynamics. In: Mikhlin, Y. (ed.) Proceedings of the 5th International Conference on Nonlinear Dynamics, 27–30 Sept 2016, Kharkov, Ukraine, pp. 28–37 (2016)Google Scholar
  33. Manevitch, L.I., Smirnov, V.V., Romeo, F.: Non-stationary resonance dynamics of the harmonically forced pendulum. Cybern. Phys. 5(3), 91–95 (2016a)Google Scholar
  34. Manevitch, L.I., Smirnov, V.V., Romeo, F.: Stationary and non-stationary resonance dynamics of the finite chain of weaky coupled pendula. Cybern. Phys. 5(4), 130–135 (2016b)Google Scholar
  35. Maruyama, S.: A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys. B 323, 193–195 (2002)Google Scholar
  36. Mickens, R.E.: Truly Nonlinear Oscillators: An Introduction to Harmonic Balance, Parameter Expansion, Iteration, and Averaging Methods. World Scientific Publishing Co. Pte. Ltd, Singapore (2010).Google Scholar
  37. Pilipchuk, V.: Analytical study of vibrating systems with strong non-linearities by employing saw-tooth time transformations. J. Sound Vib. 192(1), 43–64 (1996). doi: 10.1006/jsvi.1996.0175. URL
  38. Pine, P., Yaish, Y.E., Adler, J.: The effect of boundary conditions on the vibrations of armchair, zigzag, and chiral single-walled carbon nanotubes. J. Appl. Phys. 110, 124311 (2011)CrossRefGoogle Scholar
  39. Rafiee, R., Moghadam, R.M.: On the modeling of carbon nanotubes: A critical review. Compos. Part B 56, 435–449 (2014)CrossRefGoogle Scholar
  40. Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G., Dresselhaus, M.S.: Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science 275, 187 (1997)CrossRefGoogle Scholar
  41. Saito, R., Takeya, T., Kimura, T., Dresselhaus, G., Dresselhaus, M.S.: Raman intensity of single-wall carbon nanotubes. Phys. Rev. B 57, 4145–4153 (1998)CrossRefGoogle Scholar
  42. Savin, A.V., Hu, B., Kivshar, YuS: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 80, 195423 (2009)CrossRefGoogle Scholar
  43. Shi, M.X., Li, Q.M., Huang, Y.: Intermittent transformation between radial breathing and flexural vibration modes in a single-walled carbon nanotube, Proc. R. Soc. A 464, 1941 (2009a)Google Scholar
  44. Shi, M.X., Li, Q.M., Huang, Y.: Internal resonance of vibrational modes in single-walled carbon nanotubes. Proc. R. Soc. A 465, 03069 (2009b)Google Scholar
  45. Silvestre, N.: On the accuracy of shell models for torsional buckling of carbon nanotubes. Eur. J. Mech. A 32, 103 (2012)CrossRefzbMATHGoogle Scholar
  46. Silvestre, N., Wang, C., Zhang, Y., Xiang, Y.: Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Compos. Struct. 93, 1683 (2011)CrossRefGoogle Scholar
  47. Smirnov, V.V., Manevitch, L.I.: Limiting phase trajectories and dynamic transitions in nonlinear periodic systems. Acoust. Phys. 57, 271 (2011)CrossRefGoogle Scholar
  48. Smirnov, V.V., Manevitch, L.I.: Large-amplitude nonlinear normal modes of the discrete sine lattices. Phys. Rev. E 95, 022212 (2017)Google Scholar
  49. Smirnov, V.V., Shepelev, D.S., Manevitch, L.I.: Localization of low- frequency oscillations in single-walled carbon nanotubes. Phys. Rev. Lett. 113, 135502 (2014)CrossRefGoogle Scholar
  50. Smirnov, V., Manevitch, L., Strozzi, M., Pellicano, F.: Nonlinear optical vibrations of single-walled carbon nanotubes. 1. Energy exchange and localization of low-frequency oscillations. Phys. D Nonlinear Phenom. 325, 113–125 (2016a)Google Scholar
  51. Smirnov, V., Manevitch, L., Strozzi, M., Pellicano, F.: Nonlinear optical vibrations of single-walled carbon nanotubes. 1. energy exchange and localization of low-frequency oscillations. Phys. D Nonlinear Phenom. 325, 113–125 (2016b). doi: URL
  52. Soltani, P., Saberian, J., Bahramian, R., Farshidianfar, A.: Nonlinear free and forced vibration analysis of a single-walled carbon nanotube using shell model. IJFPS 1, 47 (2011)Google Scholar
  53. Soltani, P., Ganji, D.D., Mehdipour, I., Farshidianfar, A.: Nonlinear vibration and rippling instability for embedded carbon nanotubes. J. Mech. Sci. Tech. 26, 985–992 (2012)CrossRefGoogle Scholar
  54. Srivastava, D., Makeev, M.A., Menon, M., Osman, M.: Computational nanomechanics and thermal transport in nanotubes and nanowires. J. Nanosci. Nanotechnol. 8, 1–23 (2007)Google Scholar
  55. Strozzi, M., Manevitch, L.I., Pellicano, F., Smirnov, V.V., Shepelev, D.S.: Low-frequency linear vibrations of single-walled carbon nanotubes: Analytical and numerical models. J. Sound Vib. 333, 2936–2957 (2014)CrossRefGoogle Scholar
  56. Wang, C.Y., Ru, C.Q., Mioduchowski, A.: Applicability and limitations of simplified elastic shell equations for carbon nanotubes. J. Appl. Mech. 71, 622 (2004)CrossRefzbMATHGoogle Scholar
  57. Yang, W., Wang, R.Z., Song, X.M., Wang, B., Yan, H.: Pressure-induced raman-active radial breathing mode transition in single-wall carbon nanotubes. Phys. Rev. B 75, 045425 (2007)CrossRefGoogle Scholar
  58. Ye, L.-H., Liu, B.-G., Wang, D.-S., Han, R.: Ab initio phonon dispersions of single-wall carbon nanotubes. Phys. Rev. B 69, 235409 (2004)CrossRefGoogle Scholar
  59. Zhang, X., Hu, M., Poulikakos, D.: A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes. Nano Lett. 12, 3410 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Leonid I. Manevitch
    • 1
    Email author
  • Agnessa Kovaleva
    • 2
  • Valeri Smirnov
    • 1
  • Yuli Starosvetsky
    • 3
  1. 1.Institute of Chemical PhysicsRussian Academy of ScienceMoscowRussia
  2. 2.Space Research InstituteRussian Academy of ScienceMoscowRussia
  3. 3.Technion—Israel Institute of TechnologyFaculty of Mechanical EngineeringHaifaIsrael

Personalised recommendations