Advertisement

Strongly Nonlinear Lattices

  • Leonid I. ManevitchEmail author
  • Agnessa Kovaleva
  • Valeri Smirnov
  • Yuli Starosvetsky
Chapter
Part of the Foundations of Engineering Mechanics book series (FOUNDATIONS)

Abstract

The majority of physical, mechanical and engineering problems dealing with nonlinear processes cannot be solved by the direct methods. The main goal of the researchers is the construction of a simplified model, which can be solved by an approximate method without loosing the physical content.

References

  1. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Encyclopaedia mathematical sciences, vol. 3. Springer, Berlin (2006)Google Scholar
  2. Bogoliubov, N.N., Mitropolskii, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach, New York (1961)Google Scholar
  3. Braun, O.M., Kivshar, Y.S.: The Frenkel–Kontorova Model. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  4. Chirikov, B.V., Zaslavsky, G.M.: Sov. Phys. Uspekhi 14, 549 (1972)CrossRefGoogle Scholar
  5. Dauxois, T., Peyrard, M.: Energy localization in nonlinear lattices. Phys. Rev. Lett 70, 3935 (1993)CrossRefGoogle Scholar
  6. Frenkel, Y., Kontorova, T.: On the theory of plastic deformation and twining. Phys. Z. Sowietunion 13, 1 (1938)zbMATHGoogle Scholar
  7. Han, H., Feng, L., Xiong, S., Shiga, T., Shiomi, J., Volz, S., Kosevich, Y.A.: Long-range interatomic forces can minimize heat transfer: from slowdown of longitudinal optical phonons to thermal conductivity minimum. Phys. Rev. B 94, 054306 (2016)CrossRefGoogle Scholar
  8. Koroleva (Kikot), I., Manevitch, L.I., Vakakis, A.F.: Non-stationary resonance dynamics of a nonlinear sonic vacuum with grounding supports. J. Sound Vib. 357, 349–364 (2015a)Google Scholar
  9. Koroleva (Kikot), I., Manevitch, L.I.: Oscillatory chain with grounding support in conditions of acoustic vacuum. Rus. J. Nonlin. Dyn. 11(3), 487–502 (2015b) (Russian)Google Scholar
  10. Kuehn, C.: Multiple timescale Dynamics. Springer, New York (2015)zbMATHGoogle Scholar
  11. Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 77, 301 (2007)Google Scholar
  12. Manevitch, L.I., Romeo, F.: Non-stationary dynamics of weakly coupled pendula. Europhys. Lett. 112, 30005 (2015)CrossRefGoogle Scholar
  13. Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and thermodynamics of molecular chains. Doklady Physics 55, 324 (2010a)CrossRefGoogle Scholar
  14. Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains. Phys. Rev. E 82, 036602 (2010b)MathSciNetCrossRefGoogle Scholar
  15. Manevitch, L.I., Vakakis, A.F.: Nonlinear oscillatory acoustic vacuum. SIAM J 74, 1742–1762 (2014)MathSciNetzbMATHGoogle Scholar
  16. Mickens, R.E.: Truly Nonlinear Oscillators: An Introduction to Harmonic Balance, Parameter Expansion, Iteration, and Averaging Methods. World Scientific Publishing Co. Pte. Ltd, Singapore (2010)CrossRefGoogle Scholar
  17. Neishtadt, A.I.: Passage through a separatrix in a resonance problem with slowly varying parameter. J. Appl. Math. Mech. 39, 594 (1975)MathSciNetCrossRefGoogle Scholar
  18. Novikov, S., Manakov, S., Pitaevskii, L., Zakharov, V.: Theory of Solitons: The Inverse Scattering Method, Monographs in Contemporary Mathematics, vol. 276. Springer, US (1984)zbMATHGoogle Scholar
  19. Peyrard, M., Bishop, A.R.: Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett 62, 2755 (1989)CrossRefGoogle Scholar
  20. Rosenau, P.: Dynamics of non-linear mass-spring chains near the continuous limit. Phys. Lett. A 118, 222 (1986)MathSciNetCrossRefGoogle Scholar
  21. Rosenberg, R.M.: On nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech 9, 156–243 (1966)Google Scholar
  22. Sagdeev, R.Z., Usikov, D.A., Zaslavsky, G.M.: Nonlinear Physics: From the Pendulum to Turbulence and Chaos, p. 315. Harwood Academic Publishers, New York (1988)Google Scholar
  23. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (2007)Google Scholar
  24. Smirnov, V.V., Manevitch, L.I.: Limiting phase trajectories and dynamic transitions in nonlinear periodic systems. Acoust. Phys. 57(2), 271–276 (2011)CrossRefGoogle Scholar
  25. Takeno, S., Homma, S.: A sine-lattice (sine-form discrete sine-gordon) equation—one and two-Kink solution and physical models. J. Phys. Soc. Jpn. 55, 65 (1986)MathSciNetCrossRefGoogle Scholar
  26. Takeno, S., Peyrard, M.: Nonlinear modes in coupled rotator models. Phys. D 92, 140 (1996)CrossRefzbMATHGoogle Scholar
  27. Takeno, S., Peyrard, M.: Nonlinear rotating modes: Green’s-function solution. Phys. Rev. E 55, 1922 (1997)CrossRefGoogle Scholar
  28. Vakakis, A.F., Manevitch, L.I., Mikhlin, YuV, Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York (1996)CrossRefzbMATHGoogle Scholar
  29. Zaslavsky, G.M.: Physics of Chaos in Hamiltonian Dynamics. Imperial College Press, London (1998)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Leonid I. Manevitch
    • 1
    Email author
  • Agnessa Kovaleva
    • 2
  • Valeri Smirnov
    • 1
  • Yuli Starosvetsky
    • 3
  1. 1.Institute of Chemical PhysicsRussian Academy of ScienceMoscowRussia
  2. 2.Space Research InstituteRussian Academy of ScienceMoscowRussia
  3. 3.Technion—Israel Institute of TechnologyFaculty of Mechanical EngineeringHaifaIsrael

Personalised recommendations