Nonlinear Targeted Energy Transfer and Macroscopic Analogue of the Quantum Landau-Zener Effect in Coupled Granular Chains

  • Leonid I. ManevitchEmail author
  • Agnessa Kovaleva
  • Valeri Smirnov
  • Yuli Starosvetsky
Part of the Foundations of Engineering Mechanics book series (FOUNDATIONS)


Resonance is the main mechanism for energy propagation in spatially periodic linear/nonlinear systems. For the case of two weakly coupled identical Hamiltonian oscillators in resonance, any amount of energy imparted to one of the oscillators gets transferred back and forth between these oscillators with a frequency proportional to the coupling.


  1. Anderson, B.P., Kasevich, M.A.: Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998)CrossRefGoogle Scholar
  2. Aubry, S.: Breathers in nonlinear lattices: existence, linear stability and quantization. Physica D 103, 201–250 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Aubry, S., Kopidakis, S., Morgante, A.M., Tsironis, G.P.: Analytic conditions for targeted energy transfer between nonlinear oscillators for discrete breathers. Phys. B 296, 222–236 (2001)CrossRefGoogle Scholar
  4. Binder, P., Abraimov, D., Ustinov, A.V., Flach, S., Zolotaryuk, Y.: Observation of breathers in Josephson ladders. Phys. Rev. Lett. 84, 745–748 (2000)CrossRefGoogle Scholar
  5. Campbell, D.K., Peyrard, M.: In: Campbell, D.K. (ed.) CHAOS-Soviet American Perspectives on Nonlinear Science. American Institute of Physics, New York (1990)Google Scholar
  6. Campbell, D.K., Flach, S., Kivshar, Y.S.: Localizing energy through nonlinearity and discreteness. Phys. Today 57, 43–49 (2004)CrossRefGoogle Scholar
  7. Edler, J., Pfister, R., Pouthier, V., Falvo, C., Hamm, P.: Direct observation of self-trapped vibrational states in α-helices. Phys. Rev. Lett. 93, 106405 (2004)CrossRefGoogle Scholar
  8. Eisenberg, H.S., Silberberg, Y., Morandotti, R., Boyd, A.R., Aitchison, J.S.: Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998)CrossRefGoogle Scholar
  9. Flach, S., Willis, C.R.: Discrete breathers. Phys. Rep. 295, 181–264 (1998)MathSciNetCrossRefGoogle Scholar
  10. Hoogeboom, C., Theocharis, G., Kevrekidis, P.G.: Discrete breathers at the interface between a diatomic and a monoatomic granular chain. Phys. Rev. E 82, 061303 (2010)MathSciNetCrossRefGoogle Scholar
  11. Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F.: New family of solitary waves in granular dimer chains with no precompression. Phys. Rev. E 83, 036606 (2011a)MathSciNetCrossRefGoogle Scholar
  12. Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F., Peeters, M., Kerschen, G.: Nonlinear normal modes and band zones in granular chains with no pre-compression. Nonlinear Dyn. 63, 359–385 (2011b)MathSciNetCrossRefGoogle Scholar
  13. Job, S., Santibanez, F., Tapia, F., Melo, F.: Wave localization in strongly nonlinear Hertzian chains with mass defect. Phys. Rev. E 80, 025602(R) (2009)CrossRefGoogle Scholar
  14. Johansson, M., Morgante, A.M., Aubry, S., Kopidakis, G.: Eur. Phys. J. B 29, 279283 (2002)Google Scholar
  15. Juanico, B., Sanejouand, Y.-H., Piazza, F., De Los Rios, P.: Discrete breathers in nonlinear network models of proteins. Phys. Rev. Lett. 99, 238104 (2007)CrossRefGoogle Scholar
  16. Kopidakis, G., Aubry, S.: Intraband discrete breathers in disordered nonlinear systems. I. Delocalization. Physica D 130, 155–186 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kopidakis, G., Aubry, S.: Discrete breathers and delocalization in nonlinear disordered systems. Phys. Rev. Lett. 84, 3236–3239 (2000a)CrossRefzbMATHGoogle Scholar
  18. Kopidakis, G., Aubry, S.: Intraband discrete breathers in disordered nonlinear systems. II. Localization. Physica D 139, 247–275 (2000b)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87, 165501 (2001a)CrossRefGoogle Scholar
  20. Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87, 165501 (2001b)CrossRefGoogle Scholar
  21. Kosevich, Y.A., Manevitch, L.I., Savin, A.V.: Energy transfer in coupled nonlinear phononic waveguides: transition from wandering breather to nonlinear self-trapping. J. Phys.: Conf. Ser. 92, 012093 (2007)Google Scholar
  22. Kosevich, Y.A., Manevitch, L.I., Savin, A.V.: Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics. Phys. Rev. E 77, 046603 (2008)MathSciNetCrossRefGoogle Scholar
  23. Kosevich, Y.A., Manevitch, L.I., Savin, A.V.: Energy transfer in weakly coupled nonlinear oscillator chains: Transition from a wandering breather to nonlinear self-trapping. J. Sound. Vib. 322, 524–531 (2009)CrossRefGoogle Scholar
  24. Kosevich, Y.A., Manevitch, L.I., Manevitch, E.L.: Vibrational analogue of nonadiabatic Landau–Zener tunneling and a possibility for the creation of a new type of energy trap. Phys. Usp. 53, 1281–1286 (2010)CrossRefGoogle Scholar
  25. Kovaleva, A., Manevitch, L.I., Kosevich, Y.A.: Fresnel integrals and irreversible energy transfer in an oscillatory system with time-dependent parameters. Phys. Rev. E 83, 026602 (2011)CrossRefGoogle Scholar
  26. Manevitch, L.I., Kosevich, Y.A., Mane, M., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Towards a new type of energy trap: classical analog of quantum Landau-Zener tunneling. Int. J. Non Linear Mech. 46, 247–252 (2011). doi: 10.1016/ijnonlinmec.20.08.01010
  27. Manevitch, L.I.: Complex representation of dynamics of coupled nonlinear oscillators. In Mathematical Models of Non-Linear Excitations: Transfer, Dynamics, and Control in Condensed Systems and Other Media, pp. 269–300. Kluwer Academic, Plenum Publishers, New York (1999)Google Scholar
  28. Maniadis, P., Aubry, S.: Targeted energy transfer by Fermi resonance. Physica D 202, 200–217 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Manley, M.E., Yethiraj, M., Sinn, H., Volz, H.M., Alatas, A., Lashley, J.C., Hults, W.L., Lander, G.H., Smith, J.L.: Formation of a new dynamical mode in α-Uranium observed by inelastic X-ray and neutron scattering. Phys. Rev. Lett. 96, 125501 (2006)CrossRefGoogle Scholar
  30. Morgante, A.A., Johansson, M., Kopidakis, G., Aubry, S.: Physica D. 162, 53 (2002)Google Scholar
  31. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, Berlin, New York (2001)CrossRefGoogle Scholar
  32. Razavy, M.: Quantum Theory of Tunneling. World Scientific, Singapore (2003)CrossRefzbMATHGoogle Scholar
  33. Rosam, B., Leo, K., Gluck, M., Keck, F., Korsch, H., Zimmer, F., Kohler, K.: Lifetime of Wannier-Stark states in semiconductor superlattices under strong Zener tunneling to above-barrier bands. Phys. Rev. B 68, 125301 (2003)CrossRefGoogle Scholar
  34. Sato, M., Sievers, A.J.: Direct observation of the discrete character of intrinsic localized modes in an antiferromagnet. Nature 432, 486–488 (2004)CrossRefGoogle Scholar
  35. Scott, A.: Nonlinear Science: Emergence and Dynamics of Coherent Structures. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  36. Sen, S., Krishna Mohan, T.R.: Dynamics of metastable breathers in nonlinear chains in acoustic vacuum. Phys. Rev. E 79, 036603 (2009)CrossRefGoogle Scholar
  37. Sias, C., Zenesini, A., Lignier, H., Wimberger, S., Ciampini, D., Morsch, O., Arimondo, E.: Resonantly enhanced tunneling of Bose-Einstein condensates in periodic potentials. Phys. Rev. Lett. 98, 120403 (2007)CrossRefGoogle Scholar
  38. Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)CrossRefGoogle Scholar
  39. Starosvetsky, Y., Vakakis, A.F.: Traveling waves and localized modes in one-dimensional homogeneous granular chains with no pre-compression. Phys. Rev. E 82, 026603 (2010)MathSciNetCrossRefGoogle Scholar
  40. Starosvetsky, Y., Jayaprakash, K.R., Vakakis, A.F., Manevitch, L.I.: Effective particles and classification of periodic orbits of homogeneous granular chains with no pre-compression. Phys. Rev. E (in press)Google Scholar
  41. Starosvetsky, Y., Hasan, M.A., Vakakis, A.F., Manevitch, L.I.: Strongly nonlinear beat phenomena and energy exchanges in weakly coupled granular chains on elastic foundations. SIAM J. Appl. Math. 72(1), 337–361 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  42. Swanson, B.I., Brozik, J.A., Love, S.P., Strouse, G.F., Shreve, A.P., Bishop, A.R., Wang, W.-Z., Salkola, M.I.: Observation of intrinsically localized modes in a discrete low-dimensional material. Phys. Rev. Lett. 82, 3288–3291 (1999)CrossRefGoogle Scholar
  43. Theocharis, G., Kavousanakis, M., Kevrekidis, P.G., Daraio, C., Porter, M.A., Kevrekidis, I.G.: Localized breathing modes in granular crystals with defects. Phys. Rev. E 80, 066601 (2009)CrossRefGoogle Scholar
  44. Trias, E., Mazo, J.J., Orlando, T.P.: Discrete breathers in nonlinear lattices: experimental detection in a Josephson array. Phys. Rev. Lett. 84, 741–744 (2000)CrossRefGoogle Scholar
  45. Vakakis, A.F., Gendelman, O., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear targeted energy transfer in mechanical and structural systems. Springer, Berlin, New York (2008)zbMATHGoogle Scholar
  46. Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A Math. Phys. Sci. 137, 696–702 (1932)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Leonid I. Manevitch
    • 1
    Email author
  • Agnessa Kovaleva
    • 2
  • Valeri Smirnov
    • 1
  • Yuli Starosvetsky
    • 3
  1. 1.Institute of Chemical PhysicsRussian Academy of ScienceMoscowRussia
  2. 2.Space Research InstituteRussian Academy of ScienceMoscowRussia
  3. 3.Technion—Israel Institute of TechnologyFaculty of Mechanical EngineeringHaifaIsrael

Personalised recommendations