Skip to main content

Functional Diversity in Mycobacterial Chaperonins: The Generalists and the Specialists

  • Chapter
  • First Online:
Prokaryotic Chaperonins

Part of the book series: Heat Shock Proteins ((HESP,volume 11))

Abstract

Chaperonins are a class of molecular chaperones that form cylindrical assemblies and for sequestering the non-native protein and thereby assisting their folding. Genomic annotation studies have identified multiple copies of chaperonin genes in about 30% of the bacteria. Mycobacterium tuberculosis was the first organism where two copies were observed, and similarly other mycobacteria bear two and rarely three copies. Owing to the pathogenic lifestyle, the chaperonins of mycobacteria have been demonstrated to be secretory and possess antigenic properties. Furthermore, biochemical and structural studies have demonstrated that these chaperonins are unusual. One of the chaperonins that exists in operonic arrangement with the co-chaperonin gene has been shown to be required in several pathogenic stages of the bacteria. The other copy that exists independently is essential and thus might be functioning as a general chaperone. Several groups have worked to unravel the functional diversity of these mysterious molecules employing structural, immunochemical, cell-biological, computational and genetic tools. We review the current understanding on the mycobacterial chaperonins and the new paradigms that have arisen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AK, Ranjan R, Chandra S, Rout TK, Misra A, Reddy TJ (2016) Some proteins of M. tuberculosis that localise to the nucleus of THP-1-derived macrophages. Tuberculosis (Edinb) 101:75–78

    Google Scholar 

  • Aravindhan V, Christy AJ, Roy S, Ajitkumar P, Narayanan PR, Narayanan S (2009) Mycobacterium tuberculosis groE promoter controls the expression of the bicistronic groESL1 operon and shows differential regulation under stress conditions. FEMS Microbiol Lett 292(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Arora G, Sajid A, Virmani R, Singhal A, Kumar CM, Dhasmana N, Khanna T, Maji A, Misra R, Molle V, Becher D, Gerth U, Mande SC, Singh Y (2017) Ser/Thr protein kinase PrkC-mediated regulation of GroEL is critical for biofilm formation in Bacillus anthracis. NPJ Biofilms Microbiomes 7:1–12. doi:10.1038/s41522-017-0015-4

    CAS  Google Scholar 

  • Basu D, Khare G, Singh S, Tyagi A, Khosla S, Mande SC (2009) A novel nucleoid-associated protein of Mycobacterium tuberculosis is a sequence homolog of GroEL. Nucleic Acids Res 37(15):4944–4954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braig K, Adams PD, Brunger AT (1995) Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Å resolution. Nat Struct Biol 2(12):1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Chande AG, Siddiqui Z, Midha MK, Sirohi V, Ravichandran S, Rao KV (2015) Selective enrichment of mycobacterial proteins from infected host macrophages. Sci Rep 5:13430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen DH, Madan D, Weaver J, Lin Z, Schroder GF, Chiu W, Rye HS (2013) Visualizing GroEL/ES in the act of encapsulating a folding protein. Cell 153(6):1354–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilukoti N, Kumar CM, Mande SC (2016) GroEL2 of Mycobacterium tuberculosis reveals the importance of structural pliability in chaperonin function. J Bacteriol 198(3):486–497

    Article  CAS  PubMed Central  Google Scholar 

  • Fan M, Rao T, Zacco E, Ahmed MT, Shukla A, Ojha A, Freeke J, Robinson CV, Benesch JL, Lund PA (2012) The unusual mycobacterial chaperonins: evidence for in vivo oligomerization and specialization of function. Mol Microbiol 85(5):934–944

    Article  CAS  PubMed  Google Scholar 

  • Farr GW, Fenton WA, Horwich AL (2007) Perturbed ATPase activity and not “close confinement” of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL. Proc Natl Acad Sci U S A 104(13):5342–5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171(3):1379–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Agudo L, García-Martos P (2011) Clinical significance and antimicrobial susceptibility of rapidly growing mycobacteria. In: Memdez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Centre, Badajoz, pp 363–377

    Google Scholar 

  • Goyal K, Qamra R, Mande SC (2006) Multiple gene duplication and rapid evolution in the groEL gene: functional implications. J Mol Evol 63(6):781–787

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579. doi:10.1038/381571a0

    Article  CAS  PubMed  Google Scholar 

  • Hayer-Hartl MK, Martin J, Hartl FU (1995) Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science 269(5225):836–841

    Article  CAS  PubMed  Google Scholar 

  • Henderson B, Fares MA, Lund PA (2013) Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 88(4):955–987

    Article  PubMed  Google Scholar 

  • Hickey TB, Ziltener HJ, Speert DP, Stokes RW (2010) Mycobacterium tuberculosis employs Cpn60.2 as an adhesin that binds CD43 on the macrophage surface. Cell Microbiol 12(11):1634–1647

    Article  CAS  PubMed  Google Scholar 

  • Horwich AL, Farr GW, Fenton WA (2006) GroEL-GroES-mediated protein folding. Chem Rev 106(5):1917–1930

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Coates AR, Liu A, Lund PA, Henderson B (2013) Identification of the monocyte activating motif in Mycobacterium tuberculosis chaperonin 60.1. Tuberculosis (Edinb) 93(4):442–447

    Article  CAS  Google Scholar 

  • Hu Y, Henderson B, Lund PA, Tormay P, Ahmed MT, Gurcha SS, Besra GS, Coates AR (2008) A mycobacterium tuberculosis mutant lacking the GroEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 76(4):1535–1546. doi:10.1128/IAI.01078-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes AL (1993) Contrasting evolutionary rates in the duplicate chaperonin genes of Mycobacterium tuberculosis and M. leprae. Mol Biol Evol 10(6):1343–1359

    CAS  PubMed  Google Scholar 

  • Kong TH, Coates AR, Butcher PD, Hickman CJ, Shinnick TM (1993) Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A 90(7):2608–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruh-Garcia NA, Wolfe LM, Chaisson LH, Worodria WO, Nahid P, Schorey JS, Davis JL, Dobos KM (2014) Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS. PLoS One 9(7):e103811

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar CM (2017) Prokaryotic multiple chaperonins: the mediators of functional and evolutionary diversity. Chapter 5. In: Santosh Kumar CM, Mande SC (eds) Prokaryotic chaperonins. Springer, Heidelberg

    Google Scholar 

  • Kumar C, Mande S (2011) Protein chaperones and non-protein substrates: on substrate promiscuity of GroEL. Curr Sci 100:1646–1653

    CAS  Google Scholar 

  • Kumar CM, Khare G, Srikanth CV, Tyagi AK, Sardesai AA, Mande SC (2009) Facilitated oligomerization of mycobacterial GroEL: evidence for phosphorylation-mediated oligomerization. J Bacteriol 191(21):6525–6538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar CM, Mande SC, Mahajan G (2015) Multiple chaperonins in bacteria – novel functions and non-canonical behaviors. Cell Stress Chaperones 20(4):555–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb JR, Bal V, Rothbard JB, Mehlert A, Mendez-Samperio P, Young DB (1989) The mycobacterial GroEL stress protein: a common target of T-cell recognition in infection and autoimmunity. J Autoimmun 2(Suppl 1):93–100

    Article  PubMed  Google Scholar 

  • Lewthwaite JC, Coates AR, Tormay P, Singh M, Mascagni P, Poole S, Roberts M, Sharp L, Henderson B (2001) Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 69(12):7349–7355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund PA (2009) Multiple chaperonins in bacteria – why so many? FEMS Microbiol Rev 33(4):785–800

    Article  CAS  PubMed  Google Scholar 

  • Mande S, Kumar C, Sharma A (2013) Evolution of bacterial Chaperonin 60 paralogues and moonlighting activity. In: Henderson B (ed) Moonlighting cell stress proteins in microbial infections. Springer Netherlands, Netherlands, pp 101–121

    Chapter  Google Scholar 

  • Naffin-Olivos JL, Georgieva M, Goldfarb N, Madan-Lala R, Dong L, Bizzell E, Valinetz E, Brandt GS, Yu S, Shabashvili DE, Ringe D, Dunn BM, Petsko GA, Rengarajan J (2014) Mycobacterium tuberculosis Hip1 modulates macrophage responses through proteolysis of GroEL2. PLoS Pathog 10(5):e1004132

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123(5):861–873

    Article  CAS  PubMed  Google Scholar 

  • Qamra R, Mande SC (2004) Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J Bacteriol 186(23):8105–8113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qamra R, Srinivas V, Mande SC (2004) Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins. J Mol Biol 342(2):605–617

    Article  CAS  PubMed  Google Scholar 

  • Rao T, Lund PA (2010) Differential expression of the multiple chaperonins of mycobacterium smegmatis. FEMS Microbiol Lett 310:24–31. doi:10.1111/j.1574-6968.2010.02039.x

    Article  CAS  PubMed  Google Scholar 

  • Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198(5):693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahar A, Melamed-Frank M, Kashi Y, Shimon L, Adir N (2011) The dimeric structure of the Cpn60.2 chaperonin of Mycobacterium tuberculosis at 2.8 Å reveals possible modes of function. J Mol Biol 412(2):192–203

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Rustad T, Mahajan G, Kumar A, Rao KV, Banerjee S, Sherman DR, Mande SC (2016) Towards understanding the biological function of the unusual chaperonin Cpn60.1 (GroEL1) of Mycobacterium tuberculosis. Tuberculosis (Edinb) 97:137–146

    Article  CAS  Google Scholar 

  • Sielaff B, Lee KS, Tsai FT (2010) Crystallization and preliminary X-ray crystallographic analysis of a GroEL1 fragment from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun 66(Pt 4):418–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sielaff B, Lee KS, Tsai FT (2011) Structural and functional conservation of Mycobacterium tuberculosis GroEL paralogs suggests that GroEL1 is a chaperonin. J Mol Biol 405(3):831–839

    Article  CAS  PubMed  Google Scholar 

  • Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL (1998) Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67:581–608. doi:10.1146/annurev.biochem.67.1.581

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg MG, Belisle JT (1997) Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect Immun 65(11):4515–4524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stapleton MR, Smith LJ, Hunt DM, Buxton RS, Green J (2012) Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2. Tuberculosis (Edinb) 92(4):328–332

    Article  CAS  Google Scholar 

  • Stewart GR, Wernisch L, Stabler R, Mangan JA, Hinds J, Laing KG, Young DB, Butcher PD (2002) Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148(Pt 10):3129–3138

    Article  CAS  PubMed  Google Scholar 

  • Taneja B, Mande SC (2001) Three-dimensional structure of Mycobacterium Tuberculosis chaperonin-10 reveals a partially stable conformation for its mobile loop. Curr Sci 81:87–91

    CAS  Google Scholar 

  • Tang YC, Chang HC, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, Hartl FU, Hayer-Hartl M (2006) Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125(5):903–914

    Article  CAS  PubMed  Google Scholar 

  • Vinod Kumar K, Lall C, Vimal Raj R, Vedhagiri K, Kartick C, Surya P, Natarajaseenivasan K, Vijayachari P (2016) Overexpression of heat shock GroEL stress protein in leptospiral biofilm. Microb Pathog 102:8–11

    Article  PubMed  Google Scholar 

  • Weaver J, Rye HS (2014) The C-terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein. J Biol Chem 289(33):23219–23232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber F, Keppel F, Georgopoulos C, Hayer-Hartl MK, Hartl FU (1998) The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding. Nat Struct Biol 5(11):977–985

    Article  CAS  PubMed  Google Scholar 

  • Williams DL, Pittman TL, Deshotel M, Oby-Robinson S, Smith I, Husson R (2007) Molecular basis of the defective heat stress response in Mycobacterium Leprae. J Bacteriol 189(24):8818–8827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388(6644):741–750

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Santosh is Newton International Fellow at the University of Birmingham, UK, sponsored by The Royal Society, The British Academy and the Academy of Medical Sciences, UK. Further, we wish to acknowledge the support of Department of Biotechnology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekhar C. Mande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mande, S.C., Santosh Kumar, C.M. (2017). Functional Diversity in Mycobacterial Chaperonins: The Generalists and the Specialists. In: Kumar, C., Mande, S. (eds) Prokaryotic Chaperonins. Heat Shock Proteins, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-4651-3_5

Download citation

Publish with us

Policies and ethics