Advertisement

A Note on the Optimal Immunity of Boolean Functions Against Fast Algebraic Attacks

  • Jing Shen
  • Yusong DuEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 655)

Abstract

The immunity of Boolean functions against fast algebraic attacks is an important cryptographic property. When deciding the optimal immunity of an n-variable Boolean function against fast algebraic attacks, one may need to compute the ranks of a series of matrices of size \(\sum _{i=d+1}^{n}{n \atopwithdelims ()i}\times \sum _{i=0}^e{n \atopwithdelims ()i}\) over binary field \(\mathbb {F}_2\) for each positive integer e less than \(\lceil \frac{n}{2}\rceil \) and corresponding d. In this paper, for an n-variable balanced Boolean function, exploiting the combinatorial properties of the binomial coefficients, when n is odd, we show that the optimal immunity is only determined by the ranks of those matrices such that \(\sum _{i=0}^e{n \atopwithdelims ()i}\) is even. When n is even but not the power of 2, we show that the optimal immunity is only determined by the ranks of those matrices such that \(\sum _{i=0}^e{n \atopwithdelims ()i}\) is even or such that both \(\sum _{i=0}^e{n \atopwithdelims ()i}\) and \(\sum _{i=0}^{e+1}{n \atopwithdelims ()i}\) are odd.

Keywords

Boolean function Fast algebraic attack Algebraic immunity 

References

  1. 1.
    Armknecht, F.: Improving fast algebraic attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 65–82. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-25937-4_5 CrossRefGoogle Scholar
  2. 2.
    Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient computation of algebraic immunity for algebraic and fast algebraic attacks. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer, Heidelberg (2006). doi: 10.1007/11761679_10 CrossRefGoogle Scholar
  3. 3.
    Carlet, C., Dalai, D.K., Gupta, K.C., Maitra, S.: Algebraic immunity for cryptographically significant boolean functions: analysis and construction. IEEE Trans. Inform. Theory 52(7), 3105–3121 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Carlet, C., Feng, K.: An infinite class of balanced functions with optimal algebraic immunity, good immunity to fast algebraic attacks and good nonlinearity. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 425–440. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-89255-7_26 CrossRefGoogle Scholar
  5. 5.
    Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45146-4_11 CrossRefGoogle Scholar
  6. 6.
    Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003). doi: 10.1007/3-540-39200-9_21 CrossRefGoogle Scholar
  7. 7.
    Courtois, N.T.: Cryptanalysis of sfinks. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 261–269. Springer, Heidelberg (2006). doi: 10.1007/11734727_22 CrossRefGoogle Scholar
  8. 8.
    Crama, Y., Hammer, P.: Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  9. 9.
    Dalai, D.K.: Computing the rank of incidence matrix and algebraic immunity of Boolean functions. http://eprint.iacr.org/2013/273.pdf
  10. 10.
    Du, Y., Zhang, F., Liu, M.: On the resistance of boolean functions against fast algebraic attacks. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 261–274. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31912-9_18 CrossRefGoogle Scholar
  11. 11.
    Liu, M., Lin, D.: Fast algebraic attacks and decomposition of symmetric boolean functions. IEEE Trans. Inform. Theory 57(7), 4817–4821 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Liu, M., Zhang, Y., Lin, D.: Perfect algebraic immune functions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 172–189. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34961-4_12 CrossRefGoogle Scholar
  13. 13.
    Liu, M., Lin, D.: Almost perfect algebraic immune functions with good nonlinearity. In: International Symposium on Information Theory, ISIT 2014, pp. 1837–1841. IEEE, New York (2014)Google Scholar
  14. 14.
    Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of boolean functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24676-3_28 CrossRefGoogle Scholar
  15. 15.
    Pasalic, E.: Almost fully optimized infinite classes of boolean functions resistant to (Fast) algebraic cryptanalysis. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 399–414. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00730-9_25 CrossRefGoogle Scholar
  16. 16.
    Rizomiliotis, P.: On the resistance of boolean functions against algebraic attacks using univariate polynomial representation. IEEE Trans. Inform. Theory 56(8), 4014–4024 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tang, D., Carlet, C., Tang, X.: Highly nonlinear boolean functions with optimal algebraic immunity and good behavior against fast algebraic attacks. IEEE Trans. Inform. Theory 59(1), 653–664 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wang, W., Liu, M., Zhang, Y.: Comments on “A design of boolean functions resistant to (Fast) algebraic cryptanalysis with efficient implementation”. Crypt. Commun. 5(1), 1–6 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, Y., Liu, M., Lin, D.: On the immunity of rotation symmetric Boolean functions against fast algebraic attacks. Discrete Appl. Math. 162(1), 17–27 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Guangdong College of Industry and CommerceGuangzhouChina
  2. 2.School of Information ManagementSun Yat-sen UniversityGuangzhouChina

Personalised recommendations