Advertisement

Constrained Data Visualization Using Rational Bi-cubic Fractal Functions

  • S. K. KatiyarEmail author
  • K. M. Reddy
  • A. K. B. Chand
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 655)

Abstract

This paper addresses a method to obtain rational cubic fractal functions, which generate surfaces that lie above a plane via blending functions. In particular, the constrained bivariate interpolation discussed herein includes a method to construct fractal interpolation surfaces that preserve positivity inherent in a prescribed data set. The scaling factors and shape parameters involved in fractal boundary curves are constrained suitably such that these fractal boundary curves are above the plane whenever the given interpolation data along the grid lines are above the plane. Our rational cubic spline FIS is above the plane whenever the corresponding fractal boundary curves are above the plane. We illustrate our interpolation scheme with some numerical examples.

Keywords

Iterated function system Fractal interpolation functions Bicubic partially blended fractal surface Convergence Constrained interpolation Positivity 

MSC:

28A80 26C15 41A20 65D10 41A29 65D05 

References

  1. 1.
    Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2(4), 303–329 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barnsley, M.F., Harrington, A.N.: The calculus of fractal functions. J. Approx. Theor. 57(1), 14–34 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Böhm, W.: A survey of curve and surface methods in CAGD. Comput. Aided Geom. Des. 1, 1–60 (1984)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bouboulis, P., Dalla, L.: Fractal interpolation surfaces derived from fractal interpolation functions. J. Math. Anal. Appl. 336(2), 919–936 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chand, A.K.B., Kapoor, G.P.: Hidden variable bivariate fractal interpolation surfaces. Fractals 11, 277–288 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chand, A.K.B.: Natural cubic spline coalescence hidden variable fractal interpolation surfaces. Fractals 20(2), 117–131 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chand, A.K.B., Viswanathan, P.: A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 53(4), 841–865 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chand, A.K.B., Vijender, N., Navascués, M.A.: Shape preservation of scientific data through rational fractal splines. Calcolo 51, 329–362 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chand, A.K.B., Vijender, N.: Positive blending Hermite rational cubic spline fractal interpolation surfaces. Calcolo 1, 1–24 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chand, A.K.B., Katiyar, S.K., Viswanathan, P.: Approximation using hidden variable fractal interpolation functions. J. Fractal Geom. 2(1), 81–114 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chand, A.K.B., Navascues, M.A., Viswanathan, P., Katiyar, S.K.: Fractal trigonometric polynomial for restricted range approximation. Fractals 24(2), 11 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Casciola, G., Romani, L.: Rational interpolants with tension parameters. In: Lyche, T., Mazure, M.-L., Schumaker, L.L. (eds.) Curve and Surface Design. Modern Methods Mathematics, 41–50. Nashboro Press, Brentwood (2003).Google Scholar
  14. 14.
    Dalla, L.: Bivariate fractal interpolation functions on grids. Fractals 10(1), 53–58 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Farin, G.: Curves and Surfaces for CAGD. Morgan Kaufmann, San Francisco (2002)Google Scholar
  16. 16.
    Feng, Z., Feng, Y., Yuan, Z.: Fractal interpolation surfaces with function vertical scaling factors. Appl. Math. Lett. 25, 1896–1900 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolations. SIAM J. Numer. Anal. 17(2), 238–246 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Geronimo, J.S., Hardin, D.: Fractal interpolation surfaces and a related 2-D multiresolution analysis. J. Math. Anal. Appl. 176, 561–586 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Geronimo, J.S., Hardin, D.: Fractal interpolation functions from \(R^n\) into \(R^m\) and their projections. Z. Anal. Anwendungen 12, 535–548 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Katiyar, S.K., Chand, A.K.B., Navascués, M.A.: Hidden variable \({\mathbf{A}}\)-fractal functions and their monotonicity aspects. Rev. R. Acad. Cienc. Zaragoza 71, 7–30 (2016)Google Scholar
  21. 21.
    Malysz, R.: The Minkowski dimension of the bivariate fractal interpolation surfaces. Chaos Solitons Fractals 27, 1147–1156 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Massopust, P.R.: Fractal surfaces. J. Math. Anal. Appl. 151, 275–290 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Metzler, W., Yun, C.H.: Construction of fractal interpolation surfaces on rectangular grids. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 20(12), 4079–4086 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Navascués, M.A., Sebastián, M.V.: Smooth fractal interpolation. J. Inequal. Appl. 1–20 (2006). Article ID: 78734(1)Google Scholar
  25. 25.
    Navascues, M.A., Viswanathan, P., Chand, A.K.B., Sebastian, M.V., Katiyar, S.K.: Fractal bases for Banach spaces of smooth functions. Bull. Aust. Math. Soc. 92, 405–419 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Schimdt, J.W., Heß, W.: Positivity of cubic polynomial on intervals and positive spline interpolation. BIT Numer. Anal. 28, 340–352 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sarfraz, M., Hussain, M.Z.: Data visualization using rational spline interpolation. J. Comput. Appl. Math. 189, 513–525 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sarfraz, M., Hussain, M.Z., Nisar, A.: Positive data modeling using spline function. Appl. Math. Comput. 216, 2036–2049 (2010)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Shaikh, T., Sarfraz, M., Hussain, M.Z.: Shape preserving constrained data visualization using rational functions. J. Prime Res. Math. 7, 35–51 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Sarfraz, M., Hussain, M.Z., Hussain, M.: Shape-preserving curve interpolation. J. Comp. Math. 89, 35–53 (2012)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Songil, R.: A new construction of the fractal interpolation surface. Fractals 23, 12 (2015)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Viswanathan, P., Chand, A.K.B.: Fractal rational functions and their approximation properties. J. Approx. Theor. 185, 31–50 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Viswanathan, P., Chand, A.K.B., Navascués, M.A.: Fractal perturbation preserving fundamental shapes: bounds on the scale factors. J. Math. Anal. Appl. 419, 804–817 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Xie, H., Sun, H.: The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces. Fractals 5, 625–634 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wang, H.Y., Yu, J.S.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theor. 175, 1–18 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • S. K. Katiyar
    • 1
    Email author
  • K. M. Reddy
    • 1
  • A. K. B. Chand
    • 1
  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations