Advertisement

Accommodative FAS-FMG Multilevel Based Meshfree Augmented RBF-FD Method for Navier-Stokes Equations in Spherical Geometry

  • Nikunja Bihari BarikEmail author
  • T. V. S. Sekhar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 655)

Abstract

The efficiency of any numerical scheme measures on the accuracy of the scheme and its computational time. An efficient meshfree augmented local radial basis function (RBF-FD) method has been developed for steady incompressible Navier-Stokes equations in spherical geometry with unbounded domain which is based on accommodative FAS-FMG multigrid method. The axi-symmetric spherical polar Navier-Stokes equations are solved without using transformation. The non-linear convective terms are handled efficiently by considering upwind type of RBF nodes. The developed scheme saves around 34\(\%\) of the CPU time than the usual RBF-FD method.

Keywords

Radial basis function Accommodative FAS-FMG multilevel method Meshless method Unbounded flows Navier-Stokes equations 

References

  1. 1.
    Hyman, J.M.: Mesh refinement and local inversion of elliptic partial differential equations. J. Comput. Phys. 23, 124–134 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ghia, U.N., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)CrossRefzbMATHGoogle Scholar
  3. 3.
    Achi, B.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ding, H., Shu, C., Yeo, K.S., Xu, D.: Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method. Comput. Methods Appl. Mech. Eng. 193, 727–744 (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Javed, A., Djidjeli, K., Xing, J.T., Cox, S.J.: A hybrid mesh free local RBF-Cartesian FD scheme for incompressible flow around solid bodies. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 7, 957–966 (2013)Google Scholar
  6. 6.
    Shu, C., Ding, H., Yeo, K.S.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 192, 941–954 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Tolstykh, A.I., Lipavskii, M.V., Shirobokov, D.A.: High-accuracy discretization methods for solid mechanics. Arch. Mech. 55, 531–553 (2003)zbMATHGoogle Scholar
  8. 8.
    Cecil, T., Qian, J., Osher, S.: Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions. J. Comput. Phys. 196, 327–347 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212, 99–123 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chandhini, G., Sanyasiraju, Y.V.S.S.: Local RBF-FD solutions for steady convection-diffusion problems. Int. J. Numer. Methods Eng. 72, 352–378 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ray, R.K., Kalita, J.C.: A transformation-free HOC scheme for incompressible viscous flows on nonuniform polar grids. Int. J. Numer. Methods Fluids 62, 683–708 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Sekhar, T.V.S., Raju, B.H.S.: An efficient higher order compact scheme to capture heat transfer solutions in spherical geometry. Comput. Phys. Commun. 183, 2337–2345 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dennis, S.C.R., Walker, J.D.A.: Calculation of the steady flow past a sphere at low and moderate Reynolds numbers. J. Fluid Mech. 48, 771–789 (1971)CrossRefzbMATHGoogle Scholar
  14. 14.
    Le Clair, B.P., Hamielec, A.E., Pruppacher, H.R.: A numerical study of the drag on a sphere at low and intermediate Reynolds numbers. J. Atmos. Sci. 27, 308–315 (1970)CrossRefGoogle Scholar
  15. 15.
    Fornberg, B.: Steady viscous flow past a sphere at high Reynolds numbers. J. Fluid Mech. 190, 471–489 (1988)CrossRefGoogle Scholar
  16. 16.
    Juncu, Gh, Mihail, R.: Numerical solution of the steady incompressible Navier-Stokes equations for the flow past a sphere by a multigrid defect correction technique. Int. J. Numer. Methods Fluids 11, 379–395 (1990)CrossRefzbMATHGoogle Scholar
  17. 17.
    Feng, Z., Michaelides, E.E.: A numerical study on the transient heat transfer from a sphere at high Reynolds and Peclet numbers. Int. J. Heat Mass Transfer 43, 219–229 (2000)CrossRefzbMATHGoogle Scholar
  18. 18.
    Atefi, G.H., Niazmand, H., Meigounpoory, M.R.: Numerical analysis of 3-D flow past a stationary sphere with slip condition at low and moderate Reynolds numbers. J. Disper. Sci. Technol. 28, 591–602 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Indian Institute of Technology BhubaneswarBhubaneswarIndia

Personalised recommendations