Design of a Certificateless Designated Server Based Searchable Public Key Encryption Scheme

  • SK Hafizul IslamEmail author
  • Mohammad S. Obaidat
  • Varun Rajeev
  • Ruhul Amin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 655)


In the present day, applications of cloud computing is growing exponentially and clients are inclined to use the cloud server to store sensitive data, which is indexed by important or related keyword(s) available in the data. Once the data is stored, the client supplies some keywords to the cloud server and requests the corresponding data. If the data is stored in plaintext form, data privacy will be violated. Thus the client encrypts the data along with the realted keywords, and then stores the ciphertext in the cloud server. Encryption of data maintains the confidentiality, but this makes keyword search difficult. To solve this issue, designated server based public key encryption with keyword search (dPEKS) scheme is used. In dPEKS scheme, to get the encrypted data, the client computes a trapdoor related to a relevant keyword, and sends it to the cloud server, which then gives the ciphertext to the client provided that the trapdoor is verified. Hence, the client gets the data from the ciphertext. However, an adversary will not get any information on the data or the keywords. A certificateless dPEKS (CL-dPEKS) scheme is proposed in this paper. It provides indistinguishability to the ciphertext and trapdoor, and resilience to off-line keyword guessing attack. The Computational Diffie-Hellman (CDH) problem and Bilinear Diffie-Hellman (BDH) problem keep the proposed scheme secure.


CL-PKC dPEKS Bilinear pairing Cloud server Keyword guessing attack 


  1. 1.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24676-3_30 CrossRefGoogle Scholar
  2. 2.
    Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1249–1259. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69839-5_96 CrossRefGoogle Scholar
  3. 3.
    Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Improved searchable public key encryption with designated tester. In: Proceedings of the 4th International Symposium on Information, Computer, and Communications Security (ASIACCS 2009), pp. 376–379 (2009)Google Scholar
  4. 4.
    Hu, C., Liu, P.: An enhanced searchable public key encryption scheme with a designated tester and its extensions. J. Comput. 7(3), 716–723 (2012)CrossRefGoogle Scholar
  5. 5.
    Hu, C., Liu, P.: A secure searchable public key encryption scheme with a designated tester against keyword guessing attacks and its extension. In: Lin, S., Huang, X. (eds.) CSEE 2011. CCIS, vol. 215, pp. 131–136. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23324-1_23 CrossRefGoogle Scholar
  6. 6.
    Ni, J., Yu, Y., Xia, Q., Niu, L.: Cryptanalysis of two searchable public key encryption schemes with a designated tester. J. Inf. Comput. Sci. 9(16), 4819–4825 (2012)Google Scholar
  7. 7.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). doi: 10.1007/3-540-39568-7_5 CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Franklin, M.K.: Identity based encryption from the Weil Pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi: 10.1007/3-540-39799-X_31 Google Scholar
  10. 10.
    Koblitz, N.: Elliptic curve cryptosystem. J. Math. Comput. 48(177), 203–209 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wu, T.-Y., Tsai, T.-T., Tseng, Y.-M.: Efficient searchable ID-based encryption with a designated server. Ann. Telecommun. 69(7–8), 391–402 (2014)CrossRefGoogle Scholar
  12. 12.
    Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-40061-5_29 CrossRefGoogle Scholar
  13. 13.
    Yanguo, P., Jiangtao, C., Changgen, P., Zuobin, Y.: Certificateless public key encryption with keyword search. China Commun. 11(11), 100–103 (2014)CrossRefGoogle Scholar
  14. 14.
    Islam, S.H., Khan, M.K., Al-Khouri, A.M.: Anonymous and provably secure certificateless multireceiver encryption without bilinear pairing. Secur. Commun. Netw. 8, 2214–2231 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • SK Hafizul Islam
    • 1
    Email author
  • Mohammad S. Obaidat
    • 2
    • 3
  • Varun Rajeev
    • 4
  • Ruhul Amin
    • 5
  1. 1.Indian Institute of Information TechnologyKalyaniIndia
  2. 2.University of JordanAmmanJordan
  3. 3.Fordham UniversityBronxUSA
  4. 4.EdgeVerve Systems LimitedBengaluruIndia
  5. 5.Thapar UniversityPatialaIndia

Personalised recommendations