Skip to main content

Visualization of Covalent Bonding between NO Molecules on Cu(110)

  • Chapter
  • First Online:
  • 284 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Using STM at 6 K, the valence states of NO molecules adsorbed monomerically on Cu(110) upon deposition at about 15 K were investigated. The NO monomer was found to be bonded at the short-bridge site in an upright configuration. An STM image of the monomer appears as a dumbbell-shaped protrusion, corresponding to the shape of the \(2\pi ^*\) orbital aligned in the [1–10] direction. In contrast, the resonance state of the \(2\pi ^*\) orbital in the [001] direction is located about 0.4 eV above the Fermi level. Although the double degeneracy of the NO \(2\pi ^*\) orbital is lifted by the interaction with the anisotropic surface, the mixing of the NO \(2\pi ^*\) and the Cu d band is relatively weak and the two orthogonal \(2\pi ^*\) valence states are still localized on the molecule. Two isolated NO molecules on the surface were manipulated to approach each other closely along the [1–10] direction, and, at the separation less than 5.12 Å, the resonance states of the \(2\pi ^*\) orbital in the [1–10] direction split, modifying the shape of the STM image. This result demonstrates the covalent interactions between two NO molecules are controlled by manipulating the overlap of their “active” \(2\pi ^*\) orbitals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As described in Chap. 5, the experimental measurements show the bent structure (flat-lying NO) is thermodynamically more stable than the upright configuration. However, DFT calculations are unable to explain the relative stabilities (the bent configuration is compared to be metastable; see Table 3.1).

  2. 2.

    \(a_0 = 2.56\) Å is the Cu atomic distance along the [\(1\bar{1}0\)] direction.

  3. 3.

    This configuration is inconsistent with the previous RAIRS study (end-on configuration) [14, 15]. See Chap. 5 for further details.

References

  1. N. Nilius, T.M. Wallis, M. Persson, W. Ho, Phys. Rev. Lett. 90(19), 196103 (2003). doi:10.1103/PhysRevLett.90.196103

  2. N. Nilius, T.M. Wallis, W. Ho, Appl. Phys. A 80(5), 951 (2005). doi:10.1007/s00339-004-3121-0

    Article  CAS  Google Scholar 

  3. A. Sperl, J. Kröger, R. Berndt, A. Franke, E. Pehlke, New J. Phys. 11(6), 063020 (2009). doi:10.1088/1367-2630/11/6/063020

    Article  Google Scholar 

  4. S. Fölsch, J. Yang, C. Nacci, K. Kanisawa, Phys. Rev. Lett. 103(9), 096104 (2009). doi:10.1103/PhysRevLett.103.096104

  5. Z. Li, H.Y. Chen, K. Schouteden, K. Lauwaet, L. Giordano, M. Trioni, E. Janssens, V. Iancu, C. Van Haesendonck, P. Lievens, G. Pacchioni, Phys. Rev. Lett. 112(2), 026102 (2014). doi:10.1103/PhysRevLett.112.026102

  6. L.J. Lauhon, W. Ho, Phys. Rev. B 60(12), R8525 (1999). doi:10.1103/PhysRevB.60.R8525

    Article  CAS  Google Scholar 

  7. N. Lorente, H. Ueba, Eur. Phys. J. D 35(2), 341 (2005). doi:10.1140/epjd/e2005-00214-6

    Article  CAS  Google Scholar 

  8. X.H. Cui, X.M. Duan, J. Phys.: Condens. Matter 28(8), 085001 (2016). doi:10.1088/0953-8984/28/8/085001

  9. A.X. Brión-Ríos, D. Sánchez-Portal, P. Cabrera-Sanfelix, Phys. Chem. Chem. Phys. 18(14), 9476 (2016). doi:10.1039/C6CP00253F

    Article  Google Scholar 

  10. M. Gajdoš, J. Hafner, A. Eichler, J. Phys.: Condens. Matter 18(1), 13 (2006). doi:10.1088/0953-8984/18/1/002

  11. A.A.B. Padama, H. Kishi, R.L. Arevalo, J.L.V. Moreno, H. Kasai, M. Taniguchi, M. Uenishi, H. Tanaka, Y. Nishihata, J. Phys.: Condens. Matter 24(17), 175005 (2012). doi:10.1088/0953-8984/24/17/175005

  12. L. Bartels, G. Meyer, K.H. Rieder, Phys. Rev. Lett. 79(4), 697 (1997). doi:10.1103/PhysRevLett.79.697

  13. C.E. Dinerman, J. Chem. Phys. 53(2), 626 (1970). doi:10.1063/1.1674038

    Article  CAS  Google Scholar 

  14. W.A. Brown, R.K. Sharma, D.A. King, S. Haq, J. Phys. Chem. 100(30), 12559 (1996). doi:10.1021/jp9602888

    Article  CAS  Google Scholar 

  15. N.G. Rey, H. Arnolds, J. Chem. Phys. 135(22), 224708 (2011). doi:10.1063/1.3664861

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitoshi Shiotari .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shiotari, A. (2017). Visualization of Covalent Bonding between NO Molecules on Cu(110). In: Reactivity of Nitric Oxide on Copper Surfaces. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4582-0_3

Download citation

Publish with us

Policies and ethics