Performance Investigation of Lab-Scale Sensible Heat Storage System

  • Chilaka Ravi Chandra Rao
  • Hakeem Niyas
  • Likhendra Prasad
  • Muthukumar PalanisamyEmail author
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


This paper presents the theoretical investigation of heat storage characteristics and transient behaviour of a sensible heat storage (SHS) module of 10 MJ storage capacity designed for discharging the heat in the temperature range of 523–623 K for solar power plant applications. Thermal model of heat storage module in cylindrical configuration has been developed considering the heat transfer enhancement technique in the storage module by incorporating the axial fins on the discharging tube surfaces. High thermal conductivity (cast iron and cast steel) and low thermal conductivity (concrete) materials have been chosen as the SHS materials for the present analysis. Number of discharging tubes with axial fins over the tube periphery has been optimized based on the charging time.


Sensible heat storage Thermal modelling Concrete Cast iron Cast steel 



Centre distance between adjacent tubes, (m)


Thickness of fins on the HTF tubes, (m)


Specific heat of SHS material, (J/kg K)


Specific heat of heat transfer fluid, (J/kg K)


Internal diameter of the HTF tubes, (m)


Diameter of storage module, (m)


Height of fins on the charging tubes, (m)


Thermal conductivity of SHS material, (W/m K)


Length of SHS module, (m)


Mass of SHS material, (kg)


Number of HTF tubes


Number of fins on a HTF tube


Heat storage capacity, (J)


Discharging time, (s)


Effective discharging time, (s)


Initial temperature of storage system, (K)


HTF inlet temperature, (K)


HTF outlet Temperature, (K)


Volume of storage material, (m3)


Minimum volume of storage material required to store 10 MJ, (m3)


Density of solid-state SHS material, (kg/m3)


Density of HTF, (kg/m3)


Dynamic viscosity of HTF, (Ns/m2)


Discharging energy efficiency


Velocity of HTF, (m/s)



The authors sincerely thank the Department of Science and Technology (DST), Government of India, for the financial support (Project No: DST/TM/SERI/2K10/53(G)).


  1. 1.
    Z. Yang, S.V. Garimella, Thermal analysis of solar thermal energy storage in a molten salt thermocline. Sol. Energy 84, 974–985 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Khare, C. Knight, S. McGarry, Selection of materials for high temperature sensible energy storage. Sol. Energy Mater. Sol. Cells 115, 114–122 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Fernandez, M. Martinez, M. Segarra, I. Martorel, F. Cabeza, Selection of materials with potential in sensible thermal energy storage. Sol. Energy Mater. Sol. Cells 94, 1723–1729 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Gil, M. Medrano, F. Cabeza, State of the art on high temperature thermal energy storage for power generation, Part 1—concepts, materials and modellization. Renew. Sustain. Energy Rev. 14, 31–55 (2010)CrossRefGoogle Scholar
  5. 5.
    R. Tamme, D. Laing, W.D. Steinmann, Advanced thermal energy storage technology for parabolic trough. J. Sol. Energy Eng. 126, 794–800 (2004)CrossRefGoogle Scholar
  6. 6.
    D. Laing, W.D. Steinmann, R. Tamme, C. Richter, Solid media thermal storage for parabolic trough power plants. Sol. Energy 80, 1283–1289 (2006)CrossRefGoogle Scholar
  7. 7.
    D. Laing, C. Bahl, T. Bauer, D. Lehmann, Thermal energy storage for direct steam generation. Sol. Energy 85, 627–633 (2011)CrossRefGoogle Scholar
  8. 8.
    E. John, W.M. Hale, R.P. Selvam, Development of a high-performance concrete to store thermal energy for concentrating solar power plants, in Proceedings of the ASME 5th ICES Washington, DC, USA (2011)Google Scholar
  9. 9.
    F. Agyenim, P. Eames, M. Smyth, Heat transfer enhancement in medium temperature thermal energy storage system using a multi tube heat transfer array. Renew. Energy 35, 198–207 (2012)CrossRefGoogle Scholar
  10. 10.
    B.R. Nandi, S. Bandyopadhyay, R. Banerjee, Analysis of high temperature thermal energy storage for solar power plant, in IEEE Third International Conference on Sustainable Energy Technologies, Nepal (2012)Google Scholar
  11. 11.
    D. Sragovich, Transient analysis for designing and predicting operational performance of a high temperature sensible thermal energy storage system. Sol. Energy 43, 7–16 (1989)CrossRefGoogle Scholar
  12. 12.
    L. Miro, M.E. Navarro, P. Suresh, A. Gil, A.I. Fernandez, L.F. Cabeza, Experimental characterization of a solid industrial by product as material for high temperature sensible thermal energy storage (TES). Appl. Energy 113, 1261–1268 (2014)CrossRefGoogle Scholar
  13. 13.
    R. Anderson, S. Shiri, H. Bindra, J.F. Morris, Experimental results and modelling of energy storage and recovery in a packed bed of alumina particles. Appl. Energy 119, 521–529 (2014)CrossRefGoogle Scholar
  14. 14.
    L. Prasad, P. Muthukumar, Design and optimization of lab-scale sensible heat storage prototype for solar thermal power plant application. Sol. Energy 97, 217–229 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Niyas, L. Prasad, P. Muthukumar, Performance investigation of high-temperature sensible heat thermal energy storage system during charging and discharging cycles. Clean Technol. Environ. Policy 17, 501–513 (2015)CrossRefGoogle Scholar
  16. 16.
    M.Y. Haller, C. Cruickshank, W. Streicher, S.J. Harrison, E. Anderson, S. Furbo, Methods to determine stratification efficiency of thermal storage processes—review and theoretical comparison. Sol. Energy 83, 1847–1860 (2009)CrossRefGoogle Scholar
  17. 17.
    Y. Tian, C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538–553 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Chilaka Ravi Chandra Rao
    • 1
  • Hakeem Niyas
    • 1
  • Likhendra Prasad
    • 1
  • Muthukumar Palanisamy
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations