Advertisement

Effect of Growth Condition on Mechanical Properties of Zirconium Carbonitride Absorber-Based Spectrally Selective Coatings

  • B. Usmani
  • V. Vijay
  • R. Chhibber
  • Ambesh Dixit
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

Zirconium carbonitride (ZrC–ZrN) absorber layer has been optimized for the maximum absorptivity α ~ 0.9 in ZrOx/ZrC–ZrN/Zr reflector–absorber tandem structures on stainless steel (SS) and aluminum (Al) substrates, using reactive DC/RF magnetron sputtering process and varying reactive nitrogen during the deposition. The mechanical properties such as hardness and Young’s modulus values increase from ~19.63 to ~38.53 GPa and ~36.39 to ~58.67 GPa, respectively, with increasing nitrogen flow rate during ZrC–ZrN absorber layer deposition on SS substrate. These values also increase with increasing load up to a critical limit and saturates thereafter with further increase in load values. The films with moderate hardness and Young’s modulus exhibit enhanced solar thermal performance (α ~ 0.9) against films with lower and higher values of these mechanical properties, suggesting optimal nitrogen concentration for desired solar thermal performance.

Keywords

Spectrally selective coatings Nanoindentation Young’s modulus Hardness Absorptance Emittance 

Notes

Acknowledgements

Authors gratefully acknowledge the financial assistance, from the Ministry of New and Renewable Energy (MNRE), India through grant 15/40/2010-11/ST, to carry out experimental work.

References

  1. 1.
    B. Usmani, A. Dixit, Spectrally selective response of ZrOx/ZrC–ZrN/Zr absorber-reflector tandem structures on stainless steel and copper substrates for high temperature solar thermal applications. Sol. Energy 134, 353–365 (2016)CrossRefGoogle Scholar
  2. 2.
    B. Usmani, A. Dixit, Impact of corrosion on microstructure and mechanical properties of ZrOx/ZrC–ZrN/Zr absorber-reflector tandem solar selective structures. Sol. Energy Mater. Sol. Cells 157, 733–741 (Accepted, 2016) Google Scholar
  3. 3.
    B. Usmani, V. Vijay, R. Chhibber, L. Chandra, A. Dixit, Zirconium car bide-nitride composite matrix based solar absorber structures on glass and aluminum substrates for solar thermal applications, in ISES Solar World Congress 2015 Proceeding (in press)Google Scholar
  4. 4.
    T.-H. Fang, S.-R. Jian, D.-S. Chuu, Nanomechanical properties of TiC, TiN and TiCN thin films using scanning probe microscopy and nanoindentation. Appl. Surf. Sci. 228, 365–372 (2004). https://dx.doi.org/10.1016/j.apsusc.2004.01.053 CrossRefGoogle Scholar
  5. 5.
    S.A. Catledge, J. Borham, Y.K. Vohra, W.R. Lacefield, J.E. Lemons, Nanoindentation hardness and adhesion investigations of vapor deposited nanostructured diamond films. J. Appl. Phys. 91, 5347 (2002). https://dx.doi.org/10.1063/1.1464233 CrossRefGoogle Scholar
  6. 6.
    R. Navamathavan, D. Arivuoli, G. Attolini, C. Pelosi, Nanoindentation studies of (111) GaAs/InP epilayers. Appl. Surf. Sci. 180, 119–125 (2001). https://dx.doi.org/10.1016/S0169-4332(01)00336-1 CrossRefGoogle Scholar
  7. 7.
    N.R. Moody, W.W. Gerberich, N. Burnham, S.P. Baker, Fundamentals of Nanoindentation and Nanotribology (Materials Research Society, Warrendale, PA, 1998)Google Scholar
  8. 8.
    R. Ferencz, J. Sanchez, B. Blumich, W. Herrmann, AFM nanoindenta tion to determine Young’s modulus for different EPDM elasto mers. Polym. Test. 31, 425–432 (2012). https://dx.doi.org/10.1016/j.polymertesting.2012.01.003 CrossRefGoogle Scholar
  9. 9.
    W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation advances in understanding and refinements to the methodology. Mater. Res. Soc. 19, 3–20 (2004). https://dx.doi.org/10.1557/jmr.2004.19.1.3 CrossRefGoogle Scholar
  10. 10.
    W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. (1992). https://dx.doi.org/10.1557/JMR.1992.1564
  11. 11.
    J.F. Shackelford, W. Alexander, Materials Science and Engineering Handbook, 3rd edn. (CRC Press LLC, 2001)Google Scholar
  12. 12.
    C.S. Chen, C.P. Liu, C.Y.A. Tsao, H.G. Yang, Study of mechanical properties of PVD ZrN films, deposited under positive and negative substrate bias conditions. Scr. Mater. 51, 715–719 (2004). https://dx.doi.org/10.1016/j.scriptamat.2004.06.005 CrossRefGoogle Scholar
  13. 13.
    D. Craciun, G. Socol, G. Dorcioman, N. Stefan, G. Bourne, V. Craciun, High-quality ZrC, ZrC/ZrN and ZrC/TiN thin films grown by pulsed laser deposition. J. Optoelectron. Adv. Mater. 12, 461–465 (2010)Google Scholar
  14. 14.
    Z.W. Zhao, W. Lei, X.B. Zhang, B.P. Wang, B.K. Tay, Nanocrystalline zirconium oxide thin films grown under low pulsed dc voltages. J. Phys. D Appl. Phys. 42, 215408 (2009). https://dx.doi.org/10.1088/0022-3727/42/21/215408 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • B. Usmani
    • 1
  • V. Vijay
    • 2
  • R. Chhibber
    • 3
  • Ambesh Dixit
    • 1
  1. 1.Department of Physics and Center for Solar EnergyIndian Institute of Technology JodhpurJodhpurIndia
  2. 2.Department of MathematicsIndian Institute of Technology JodhpurJodhpurIndia
  3. 3.Department of Mechanical EngineeringIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations