Nanotechnology in Life Science: Its Application and Risk

  • Gero BenckiserEmail author


From the increasing number of patent registrations, the European Commission (EC) concludes that nanotechnology ranks within the six most promising key technologies. Most successful at inventing nanomaterials—measuring one billionth of a meter—is nature, which provides blueprints of self-organizing physical-chemical nanoparticles (NPs) properties and opens new dimensions for researchers in exploiting nature’s NPs and developing new products for increasing the agricultural and industrial productivity.

After summarizing product processing effects, advantages and risks for agriculture, food, nutrition, and medicine, this book chapter discusses reasons why NPs use should occur balanced and carefully controlled by health and landscape policy. Only then a successful and profitable use for the overall benefit at lowest environmental pollution is achieved.


Absorber Biocidal nanoparticles Encapsulated systems Novel food Nanopharmaceuticals Sensor elements Lab on a chip analytic Toxicity Risk assessment 


  1. Afzal A, Rafique M, Iqbal N, Qaiser AA, Anwar AW, Iqbal SS (2016) Synergistic effect of functionalized nanokaolin decorated MWCNTs on the performance of cellulose acetate (CA) membranes spectacular. Nanomaterials 6:79. doi: 10.3390/nano6040079 CrossRefPubMedCentralGoogle Scholar
  2. Allen C, Mittal G, Sung CJ, Toulson EL (2011) An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels Proc Combustion. Proc Combust Inst 33:3367–3374. doi: 10.1016/j.proci.2010.06.007 CrossRefGoogle Scholar
  3. Aristov AI, Manousidaki M, Danilov A, Terzaki K, Fotakis C, Farsari M, Kabashin AV (2016) 3D plasmonic crystal metamaterials for ultra-sensitive bio-sensing. Sci Rep 6(25380):1–8. doi: 10.1038/srep25380 Google Scholar
  4. Banitz T, Johst K, Wick LY, Schamfuß S, Harms H, Frank K (2013) Highways versus pipelines: contributions of two fungal transport mechanisms to efficient bioremediation. Environ Microbiol Rep 5:211–218. doi: 10.1111/1758-2229.12002 CrossRefPubMedGoogle Scholar
  5. Benckiser G (2012) Nanotechnology and patents in agriculture, food technology, nutrition and medicine – advantages and risks. Recent Pat Food Nutr Agric 4:171–175CrossRefPubMedGoogle Scholar
  6. Benckiser G, Christ E, Herbert T, Weiske A, Blome J, Hardt M (2013) The nitrification inhibitor 3,4-dimethylpyrazole-phosphat (DMPP) – quantification and effects on soil metabolism. Plant Soil 371:257–266. doi: 10.1007/s11104-013-1664-6 CrossRefGoogle Scholar
  7. Benckiser G, Ladha JK, Wiesler F (2016) Climate change and nitrogen turnover in soils and aquatic environments. In: Marxsen J (ed) Climate change and microbial ecology: current research and future trends. Caister Academic Press, Norfolk, ch 8, 22 pGoogle Scholar
  8. Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3(1294):1–8. doi: 10.1038/srep01294 Google Scholar
  9. Böhmert L, Niemann LD, Juling S, Lampen A (2015) Molecular mechanism of silver nanoparticles in human intestinal cells. Nanotoxicology 9:852–860. doi: 10.3109/17435390.2014.980760 CrossRefPubMedGoogle Scholar
  10. Brown S (2009) The new deficit model. Nat Nanotechnol 4:609–612. doi: 10.1038/nnano.2009.278 CrossRefPubMedGoogle Scholar
  11. Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, García de Abajo FJ, Hillenbrand R, Koppens FHL (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487:77–81. doi:10.1038/ nature11254 PubMedGoogle Scholar
  12. Cherukula K, Lekshmi KM, Uthaman S, Cho K, Cho C-S, Park I-K (2016) Multifunctional inorganic nanoparticles: recent progress in thermal therapy and imaging. Nanomaterials 6:76. doi: 10.3390/nano6040076 CrossRefPubMedCentralGoogle Scholar
  13. Cobb MD, Macoubrie J (2004) Public perceptions about nanotechnology: risks, benefits and trust. J Nanopart Res 6:395–405. doi: 10.1007/s11051-004-3394-4 CrossRefGoogle Scholar
  14. Conner AJ, Jacobs JM (1999) Genetic engineering of crops as potential source of genetic hazard in the human diet. Mutat Res:223–234. doi: 10.1016/S1383-5742(99)00020-4
  15. Coppola AD, Verneau F (2014) An empirical analysis on technophobia/technophilia in consumer market segmentation. Agric Food Econ 142. doi: 10.1186/2193-7532-2-2
  16. De Lorenzo V (2014) From the shelfish gene to the shelfish metabolism: revisiting the central dogma. BioEssays 36:226–235. doi: 10.1002/bies.201300153 CrossRefPubMedGoogle Scholar
  17. Deng S, Bei Y, Lu X, Du Z, Wang B, Wang Y, Huang J, Yu G (2015) Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes. Front Environ Sci Eng 9:784–792. doi: 10.1007/s11783-015-0790-1 CrossRefGoogle Scholar
  18. Dickinson E (2012) Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends Food Sci Techn 24:4–12. doi:10.1016/ j.tifs.2011.09.006CrossRefGoogle Scholar
  19. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24. doi: 10.1016/j.jcis.2011.07.017 CrossRefPubMedGoogle Scholar
  20. Frost and Sullivan, company report (2016) Recent innovations in nano-instrumentation – Nanotech TOE.
  21. Grobe A, Rissanen ME (2012) Nanotechnologies in agriculture and food: an overview of different fields of application, risk assessment and public perception. Recent Pat Food Nutr Agric 4:176–186CrossRefPubMedGoogle Scholar
  22. Gupta N, Fischer ARH, Frewer L (2015) Ethics, risk and benefits associated with different applications of nanotechnology: a comparison of expert and consumer perceptions of drivers of societal acceptance. NanoEthics 9:93–108. doi: 10.1007/s11569-015-0222-5 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Heo J, Hwang C-S (2016) Application of L-aspartic acid-capped ZnS:Mn as a colloidal nanocrystals photosensor for the detection of copper (II) ions in aqueous solution. Nanomaterials 6:82. doi: 10.3390/nano6050082 CrossRefPubMedCentralGoogle Scholar
  24. Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance – a critical review. Crop Prot 18:177–191. doi: 10.1016/S0261-2194(99)00028-9 CrossRefGoogle Scholar
  25. Horst MF, Lassalle V, Ferreira ML (2015) Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes. Front Environ Sci Eng 9:746–769. doi: 10.1007/s11783-015-0814-x CrossRefGoogle Scholar
  26. Horstkotte E, Odoerfer KI (2012) Towards improved therapies using nanopharmaceuticals: recent patents on pharmaceutical nanoformulations. Recent Pat Food Nutr Agric 4(3):220–244CrossRefPubMedGoogle Scholar
  27. Ikemoto S, Sugimura K, Yoshida N, Yasumoto R, Wada S, Yamamoto K, Kishimoto T (2000) Antitumor effects of scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology 55:951–955CrossRefPubMedGoogle Scholar
  28. Jang EJ, Cha SM, Choi SM, Cha JD (2014) Combination effects of baicalein with antibiotics against oral pathogens. Arch Oral Biol 59:1233–1241CrossRefPubMedGoogle Scholar
  29. Jivani RR, Lakhtaria GJ, Patadiya DD, Patel LD, Jivani NP, Jhala BP (2016) Biomedical microelectromechanical systems (BioMEMS): revolution in drug delivery and analytical techniques. Saudi Pharm J 24:1–20. doi: 10.1016/j.jsps.2013.12.003 CrossRefPubMedGoogle Scholar
  30. Kong L, Ziegler GR (2012) Patents on fiber spinning from starches. Recent Pat Food Nutr Agric 4(3):210–219CrossRefPubMedGoogle Scholar
  31. Kuhlmeier D, Sandetskaya N, Allelein S (2012) Application of nanotechnology in miniaturized systems and its use in medical and food analysis. Recent Pat Food Nutr Agric 4:187–199CrossRefPubMedGoogle Scholar
  32. Kumar A, Kumar P, Joshi C, Manchanda M, Boukherroub R, Jain Suman L (2016) Nickel decorated on phosphorous-doped carbon nitride as an efficient photocatalyst for reduction of nitrobenzenes. Nanomaterials 6:59. doi: 10.3390/nano6040059 CrossRefPubMedCentralGoogle Scholar
  33. Leung KCF, Seneviratne CJ, Li X, Leung PC, Lau CBS, Wong CH, Pang KY, Wong CW, Wat E, Jin L (2016) Synergistic antibacterial effects of nanoparticles encapsulated with Scutellaria baicalensis and pure chlorhexidine on oral bacterial biofilms. Nanomaterials 6:61. doi: 10.3390/nano6040061 CrossRefPubMedCentralGoogle Scholar
  34. Liu R, Lal R (2015) Effects of molecular weight and concentration of carboxymethyl cellulose on morphology of hydroxyapatite nanoparticles as prepared with one-step wet chemical method. Front Environ Sci Eng 9:804–812. doi: 10.1007/s11783-015-0785-y CrossRefGoogle Scholar
  35. Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47. doi: 10.1007/s11947-010-0328-2 CrossRefGoogle Scholar
  36. Ouyang W, Kuna E, Yepez A, Balu AM, Romero AA, Colmenares JC, Luque R (2016) Mechanochemical synthesis of TiO2 nanocomposites as photocatalysts for benzyl alcohol photo-oxidation. Nanomaterials 6:93. doi: 10.3390/nano6050093 CrossRefPubMedCentralGoogle Scholar
  37. Palomo JM, Filice M (2016) Biosynthesis of metal nanoparticles: novel efficient heterogeneous nanocatalysts. Nanomaterials 6:84. doi:10.3390/nano6050 084 CrossRefPubMedCentralGoogle Scholar
  38. Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? NanoToday 10:124–127. doi: 10.1016/j.nantod.2014.09.009 CrossRefGoogle Scholar
  39. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 963961.
  40. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham. ISBN:978-3-319-42989-2Google Scholar
  41. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  42. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363 CrossRefGoogle Scholar
  43. Prasad R, Pandey R, Varma A, Barman I (2017a) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CABI, Wallingford, pp 53–70Google Scholar
  44. Prasad R, Bhattacharyya A, Nguyen QD (2017b) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014
  45. Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4:186–193. doi: 10.4103/0975-7406.99016 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotech: Phys Chem 1:72–96. doi: 10.1080/19430871003684440 CrossRefGoogle Scholar
  47. Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S (2016) Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6:74. doi: 10.3390/nano6040074 CrossRefPubMedCentralGoogle Scholar
  48. Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350. doi: 10.3390/ma6062295 CrossRefGoogle Scholar
  49. Renn O (2008) Concepts of risk: an interdisciplinary review- part 1: disciplinary concepts. GAIA 17:50–66CrossRefGoogle Scholar
  50. Rogers JA (2010) Nanoribbons on the edge. Nat Nanotechnol 5:698–699CrossRefPubMedGoogle Scholar
  51. Sadeghi R, Ebadollahi A (2015) Susceptibility of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Sitophilus oryzae (L.) (Coleoptera: Curculionidae) to Spinosad (Tracer®) as an eco-friendly biopesticide. Ecologgia Balkanica 7:39–44. Google Scholar
  52. Salamanca-Buentello F, Persad DL, Court EB, Martin DK, Daar AS, Singer PA (2005) Nanotechnology and the developing world. PLoS Med 2(5):e97Google Scholar
  53. Scandorieiro S, de Camargo LC, Lancheros CAC, Yamada-Ogatta SF, Nakamura CV, de Oliveira AG, Andrade CGTJ, Duran N, Nakazato G, Kobayashi RKT (2016) Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front Microbiol 7:760. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schmitt F, Lagopoulos L, Käuper P, Rossi N, Busso N, Barge J, Wagnières G, Laue C, Wandrey C, Juillerat-Jeanneret L (2010) Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J Control Release 144:242–250. doi: 10.1016/j.jconrel.2010.02.008 CrossRefPubMedGoogle Scholar
  55. Schroeder D, Dalton-Brown S, Schrempf B, Kaplan D (2016) Responsible, inclusive innovation and the nano-divide. NanoEthics 10:177–188. doi: 10.1007/s11569-016-0265-2 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Seneviratne CJ, Leung KC, Wong CH, Lee SF, Li X, Leung PC, Lau CB, Wat E, Jin LJ (2014) Nanoparticle-encapsulated chlorhexidine against oral bacterial biofilms. PLoS One 9:e103234. Scholar
  58. Senior K, Müller S, Schacht VJ, Bunge M (2012) Antimicrobial precious-metal nanoparticles and their use in novel materials. Recent Pat Food Nutr Agric 4:200–209CrossRefPubMedGoogle Scholar
  59. Senjen R (2012) Nanotechnology and patents – how can potential risks be assessed? Recent Pat Food Nutr Agric 4:245–249CrossRefPubMedGoogle Scholar
  60. Senjen R, Hansen SF (2011) Towards a nanorisk appraisal framework. Comptes Rendus Physique12:637–6648  10.1016/j.crhy.2011.06.005
  61. Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials 6:71. doi: 10.3390/nano6040071 CrossRefPubMedCentralGoogle Scholar
  62. Shen J-M, Xu L, Lu Y, Cao H-M, Xu Z-G, Chen T, Zhang H-X (2012) Chitosan-based luminescent/magnetic hybrid nanogels for insulin delivery, cell imaging, and antidiabetic research of dietary supplements. Int J Pharm 427:400–409. doi: 10.1016/j.ijpharm.2012.01.059 CrossRefPubMedGoogle Scholar
  63. Smith RC, Li J, Padungthon S, Sengupta AK (2015) Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for sorption/desorption of target ligands. Front Environ Sci Eng 9:929–938. doi: 10.1007/s11783-015-0795-9 CrossRefGoogle Scholar
  64. Sticklen MB (2009) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443. doi: 10.1038/nrg2336 CrossRefGoogle Scholar
  65. Stracke F, Weiss B, Lehr CM, König K, Schaefer UF, Schneider M (2006) Multiphoton microscopy of dermal penetration of nanoparticle-borne drugs. J Invest Dermatol 126:2224–2233. doi: 10.1038/sj.jid.5700374 CrossRefPubMedGoogle Scholar
  66. Sunkara B, Su Y, Zhan J, He J, McPherson GL, John VT (2015) Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons. Front Environ Sci Eng 9:939–947. doi: 10.1007/s11783-015-0807-9 CrossRefGoogle Scholar
  67. Taniguchi N (1974) On the basic concept of “Nano-Technology.” In: Proceedings of the international conference on production engineering, Tokyo, Part II, Japan Society of Precision Engineering, pp 18–23Google Scholar
  68. Tzuzuki T (2009) Commercial scale production of inorganic nanoparticles. Int J Nanotechnol 6:567CrossRefGoogle Scholar
  69. Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:e1001877. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Xiao B, Ma P, Viennois E, Merlin D (2016) Urocanic acid-modified chitosan nanoparticles can confer anti-inflammatory effect by delivering CD98 siRNA to macrophages. Colloids Surf B: Biointerfaces 143:186. doi:10.1016/j. colsurfb.2016.03.035CrossRefPubMedGoogle Scholar
  71. Yang Y, Yu Z, Nosaka T, Doudrick K, Hristovski K, Herckes P, Westerhoff P (2015) Interaction of carbonaceous nanomaterials with wastewater biomass. Front Environ Sci Eng 9:823–831. doi: 10.1007/s11783-015-0787-9 CrossRefGoogle Scholar
  72. Yang M, Fang Y, Sun D, Shi Y (2016) Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis. Sci Rep 6, Article number: 22075 doi: 10.1038/srep22075
  73. Yu K, Wang M, Wu J, Qian K, Sun J, Lu X (2016) Modification of the interfacial interaction between carbon fiber and epoxy with carbon hybrid materials. Nanomaterials 6:89. doi: 10.3390/nano6050089 CrossRefPubMedCentralGoogle Scholar
  74. Zerulla W, Barth T, Dressel J, Erhardt K, Horchler von Locquenqhien K, Pasda G, Raedle M, Wissemeier AH (2001) DMPP-a new nitrification inhibitor for agriculture and horticulture: an introduction. Biol Fertil Soils 34:79–84. doi: 10.1007/s003740100380 CrossRefGoogle Scholar
  75. Zimmer R, Hertel R, Böl G-F (eds) (2012) Risk perception of nanotechnology-analysis of media coverage. Federal Institute for Risk Assessment, Berlin. Available at:

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Applied MicrobiologyJustus Liebig University of GiessenGiessenGermany
  2. 2.Research Center for BioSystems, Land Use, and Nutrition (IFZ)Justus Liebig University of GiessenGiessenGermany

Personalised recommendations