Nanotechnology pp 279-291 | Cite as

Nanosensors: Frontiers in Precision Agriculture



In the last decennium, nanotechnology has earned strength in and become the influential gizmo in current agriculture. Nanotechnology can boost agricultural production by improving nutrient use efficiency with nanoformulations of fertilizers; agrochemicals for crop enhancement, detection and treatment of diseases, host-parasite interactions at the molecular level using nanosensors, plant disease diagnostics, contaminants removal from soil and water, postharvest management of vegetables and flowers, and reclamation of salt-affected soils; etc. Nanobiosensors can be also employed for sensing a wide variety of pathogens, fertilizers, moisture and soil pH aiming to remove plant protection product applications, reduce loss of nutrients, and enhance crop yields through good nutrient management. Here we review nanotechnology applications for agriculture production, metal oxide-based nanosensors for protection of crops from diseases caused by bacteria and counter microbial attacks.


Nanosensors Precision farming Nanotechnocrates Plant growth hormones Pathogen detection Soil conditions 


  1. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612CrossRefPubMedGoogle Scholar
  2. Bellingham BK (2011) Proximal soil sensing. Vadose Zone J 10:1342–1342. doi: 10.2136/vzj2011.0105br CrossRefGoogle Scholar
  3. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594CrossRefGoogle Scholar
  4. Chiu T-C, Huang C-C (2009) Aptamer-functionalized nano-biosensors. Sensors 9:10356–10388CrossRefPubMedPubMedCentralGoogle Scholar
  5. da Silva AC, Deda DK, da Roz AL et al (2013) Nanobiosensors based on chemically modified AFM probes: a useful tool for metsulfuron-methyl detection. Sensors (Basel) 13(2):1477–1489CrossRefGoogle Scholar
  6. Du D, Chen S, Cai J, Zhang A (2008a) Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface. Talanta 74(4):766–772. doi: 10.1016/j.talanta.2007.07.014 CrossRefPubMedGoogle Scholar
  7. Du D, Chen S, Song D, Li H, Chen X (2008b) Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosens Bioelectron 24(3):475–479. doi: 10.1016/j.bios.2008.05.005 CrossRefPubMedGoogle Scholar
  8. El Beyrouthya M, El Azzi D (2014) Nanotechnologies: novel solutions for sustainable agriculture. Adv Crop Sci Technol 2:e118. doi: 10.4172/2329-8863.1000e118 CrossRefGoogle Scholar
  9. Farrell D, Hoover M, Chen H, Friedersdorf L (2013) Overview of resources and support for nanotechnology for sensors and sensors for nanotechnology: improving and protecting health, safety, and the environment. US National Nanotechnology Initiative, Arlington. Google Scholar
  10. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803CrossRefPubMedGoogle Scholar
  11. Jones PBC (2014) A nanotech revolution in agriculture and the food industry. Information Systems for Biotechnology, Blacksburg.
  12. Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005) A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 17:54–58CrossRefGoogle Scholar
  13. Kang TF, Wang F, Lu LP, Zhang Y, Liu TS (2010) Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes. Sensor Actuat B-Chem 145:104e109CrossRefGoogle Scholar
  14. Kaushik A, Solanki PR, Ansarib AA, Malhotra BD, Ahmad S (2009) Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochem Eng J 46:132–140CrossRefGoogle Scholar
  15. Krejcova L, Michalek P, Rodrigo MM, Heger Z, Krizkova S, Vaculovicova M, Hynek D, Adam V, Kizek R (2015) Nanoscale virus biosensors: state of the art. Nanobiosensors in Disease Diagnosis 4:47–66. doi: 10.2147/NDD.S56771 Google Scholar
  16. Kumaravel A, Chandrasekaran M (2011) A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion. J Electroanal Chem 650:163e170CrossRefGoogle Scholar
  17. Li Y, Cu YT, Luo D (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23(7):885–889CrossRefPubMedGoogle Scholar
  18. Li C, Wang C, Hua S (2006a) Development of a parathion sensor based on molecularly imprinted nano-TiO2 self-assembled film electrode. Sensor Actuat B-Chem 117:166e171Google Scholar
  19. Li XH, Xie Z, Min H, Li C, Liu M, Xian YJ (2006b) Development of quantum dots modified acetylcholinesterase biosensor for the detection of Trichlorfon. Electroanalysis 18(22):2163–2167. doi: 10.1002/elan.200603615 CrossRefGoogle Scholar
  20. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585CrossRefPubMedGoogle Scholar
  21. Liu Y, Tong Z, Prud’homme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64:808–812CrossRefPubMedGoogle Scholar
  22. Lopez MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13e46Google Scholar
  23. McKeague Maureen, Giamberardino Amanda, De Rosa C Maria (2011) Advances in aptamer-based biosensors for food safety. In: Vernon Somerset (ed) Environ Biosensors. INTECH, Janeza Trdine 9, 51000 Rijeka, Croatia – EUROPEAN UNION. ISBN: 978–953–307-4863Google Scholar
  24. McLamore ES, Diggs A, Calvo Marzal P et al (2010) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63(6):1004–1016CrossRefPubMedGoogle Scholar
  25. Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2015) The application of nanotechnology for micronutrients in soil-plant systems, VFRC Report 2015/3. Virtual Fertilizer Research Center, Washington, DC, p 44Google Scholar
  26. Mousavi SR, Rezaei M (2010) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419Google Scholar
  27. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. doi: 10.1016/j.plantsci.2010.04.012 CrossRefGoogle Scholar
  28. Otles S, Yalcin B (2010) Nano-biosensors as new tool for detection of food quality and safety. Log Forum 6(4):67–70Google Scholar
  29. Parham H, Rahbar N (2010) Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode. J Hazard Mater 177:1077e1084CrossRefGoogle Scholar
  30. Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? NanoToday 10:124–127. doi: 10.1016/j.nantod.2014.09.009 CrossRefGoogle Scholar
  31. Patolsky F, Zheng G, Lieber C (2006) Nanowire-based biosensors. Anal Chem 78:4260–4269CrossRefPubMedGoogle Scholar
  32. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014:Article ID 963961. CrossRefGoogle Scholar
  33. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  34. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363 CrossRefGoogle Scholar
  35. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014
  36. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotchnol 3:315–324CrossRefGoogle Scholar
  37. Ramanathan M, Luckarift HR, Sarsenova A, Wild JR, Ramanculov ER, Olsen EV et al (2009) Lysozyme-mediated formation of protein–silica nano-composites for biosensing applications. Colloids Surf B: Biointerfaces 73:58–64CrossRefPubMedGoogle Scholar
  38. Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54. doi: 10.1016/j.bbrep.2015.11.010 Google Scholar
  39. Roda A, Mirasoli M, Michelini E, Massimo DF, Zangheri M, Cevenini L, Barbara PS (2016) Progress in chemical luminescence-based biosensors: a critical review. Biosens Bioelectron 76:164–179. doi: 10.1016/j.bios.2015.06.017 CrossRefPubMedGoogle Scholar
  40. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. doi: 10.2147/NSA.S39406 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Seo S, Dobozi-King M, Young RF, Kish LB, Cheng M (2008) Patterning a nanowell sensor biochip for specific and rapid detection of bacteria. Microelectron Eng 85(7):1484–1489. doi: 10.1016/j.mee.2007.12.046 CrossRefGoogle Scholar
  42. Sharma P, Sablok K, Bhalla V, Suri CR (2011) A novel disposable electrochemical immunosensor for phenyl urea herbicide Diuron. Biosens Bioelectron 26(10):4209–4212. doi: 10.1016/j.bios.2011.03.019 CrossRefPubMedGoogle Scholar
  43. Singh D, Singh SC, Kumar S, Lal B, Singh NB (2010) Effect of titanium dioxide nanoparticles on the growth and biochemical parameters of Brassica oleracea. In: Riberio C, de-Assis OBG, Mattoso LHC, Mascarenas S (eds), Symposium of International conference on Food and Agricultural Applications of Nanotechnologies. Sao Pedro, SP, BrazilGoogle Scholar
  44. Su HC, Zhang M, Bosze W, Lim JH, Myung NV (2013) Metal nanoparticles and DNA co-functionalized single-walled carbon nanotube gas sensors. Nanotechnology 24(50):502–505CrossRefGoogle Scholar
  45. Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191Google Scholar
  46. Sun H, Fung Y (2006) Piezoelectric quartz crystal sensor for rapid analysis of pirimicarb residues using molecularly imprinted polymers as recognition elements. Anal Chim Acta 576:67e76Google Scholar
  47. Sun D, Hussain H, Yi Z, Siegele R, Cresswell T, Kong L, Cahill D (2014) Uptake and cellular distribution, in four plant species, of fluorescently labelled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402CrossRefPubMedGoogle Scholar
  48. Tereshchenko A, Bechelany M, Roman V, Volodymyr K, Valentyn NS, Yakimova R (2016) Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review. Sensors Actuators B Chem 229:664–671. doi: 10.1016/j.snb.2016.01.099 CrossRefGoogle Scholar
  49. Thakkar MN, Mhatre S, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanotechol Biol Med 6:257–262CrossRefGoogle Scholar
  50. The Royal Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. The Royal Society, LondonGoogle Scholar
  51. Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848e2853Google Scholar
  52. Velasco-Garcia MN (2014) Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Semin Cell Dev Biol 20(1):27–33CrossRefGoogle Scholar
  53. Vinayaka AC, Basheer S, Thakur MS (2009) Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens Bioelectron 24:1615–1620CrossRefPubMedGoogle Scholar
  54. Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24:2772e2777Google Scholar
  55. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18(6):533–550CrossRefGoogle Scholar
  56. Wang M, Li Z (2008) Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensor Actuat B-Chem 133:607e612Google Scholar
  57. Wang Z, Wei F, Liu SY, Xu Q, Huang JY, Dong XY, Yua JH, Yang Q, Zhao YD, Chen H (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80:1277e1281Google Scholar
  58. Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014) Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal Chem 86(24):11937–11941. doi: 10.1021/ac5028726 CrossRefPubMedGoogle Scholar
  59. Yao J, Yang M, Duan YX (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114:6130–6178. doi: 10.1021/cr200359p CrossRefPubMedGoogle Scholar
  60. Yu Y, Anthony SM, Bae SC, Luijten E, Granick S (2009) Biomolecular science of liposome nanoparticle constructs. Mol Cryst Liq Cryst 507:18–25CrossRefGoogle Scholar
  61. Zhao S, Jhang H, Wang W, Mao B (2007) Cloning and developmental expression of the Xenopus Nkx6 genes. Dev Genes E 6:217Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Research Program-AsiaInternational Crops Research Institute for the Semi-Arid TropicsPatancheruIndia

Personalised recommendations