Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 617 Accesses

Abstract

Various chemical admixtures are practically used to modify the rheological properties of FCPs through changing the microstructure of FCPs and impacting the interactions of cement grains (Banfill et al. 2007; Ferrari et al. 2010; Kauppi et al. 2003; Roncero et al. 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Autier C, Azema N, Taulemesse JM et al (2013) Mesostructure evolution of cement pastes with addition of superplasticizers highlighted by dispersion indices. Powder Technol 249(11):282–289

    Article  Google Scholar 

  • Banfill PFG, Bowen P, Flatt RJ et al (2007) Improved superplasticisers for high performance concrete: the SUPERPLAST project. Abstract CD ROM of the twelfth international congress on the chemistry of cement, Montreal, Canada, 8–13 July

    Google Scholar 

  • Chanvillard G, Laetitia D (1997) Concrete strength estimation at early ages: modification of the method of equivalent age. ACI Mater J 94(6):220–227

    Google Scholar 

  • Ferrari L, Kaufmann J, Winnefeld F et al (2010) Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements. J Colloid Interface Sci 347(1):15–24

    Article  Google Scholar 

  • Flatt RJ (2004) Towards a prediction of superplasticized concrete rheology. Mater Struct 37(5):289–300

    Article  Google Scholar 

  • Flatt RJ, Bowen P (2006) Yodel: a yield stress model for suspensions. J Am Ceram Soc 89(4):1244–1256

    Article  Google Scholar 

  • Flatt RJ, Bowen P (2007) Yield stress of multimodal powder suspensions: an extension of the YODEL (Yield Stress mODEL). J Am Ceram Soc 90(4):1038–1044

    Article  Google Scholar 

  • Frankel NA, Acrivos A (1967) On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci 22(6):847–853

    Article  Google Scholar 

  • Golaszewski J, Szwabowski J (2004) Influence of superplasticizers on rheological behavior of fresh cement mortars. Cem Concr Res 34(2):235–248

    Article  Google Scholar 

  • Hansen PF, Pedersen EJ (1977) Maturity computer for controlled curing and hardening of concrete, Nordisk Betong, 41(19):21–25

    Google Scholar 

  • Hansen FP, Pederson EJ (1985) Curing of concrete structures, Draft DEB-guide to durable concrete structures, Appendix 1, Comite Euro-International du Beton, Lausanne, Switzerland.

    Google Scholar 

  • Kapur PC, Scales PJ, Boger DV et al (1997) Yield stress of suspensions loaded with size distributed particles. AIChE J 43(5):1171–1179

    Article  Google Scholar 

  • Kauppi A, Banfill PFG, Bowen P et al (2003) Improved superplasticizers for high performance concrete. In: Proceedings of the 11th international congress on the chemistry of cement, New Delhi, India, 2(LTP-CONF-2003-001), p 8

    Google Scholar 

  • Kong XM, Zhang YR, Hou SS (2013) Study on the rheological properties of Portland cement pastes with polycarboxylate superplasticizers. Rheol Acta 52(7):707–718

    Article  Google Scholar 

  • Krieger IM (1972) Rheology of monodisperse latices. Adv Coll Interface Sci 3(2):111–136

    Article  Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol (1957–1977) 3(1):137–152

    Article  MATH  Google Scholar 

  • Lin F, Meyer C (2009) Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure. Cem Concr Res 39(4):255–265

    Article  Google Scholar 

  • Mills RH (1966) Factors influencing cessation of hydration in water cured cement pastes. Highway research board special report (90), pp 406–424

    Google Scholar 

  • Morris JF (2009) A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol Acta 48(8):909–923

    Article  Google Scholar 

  • Nawa T (2006) Effect of chemical structure on steric stabilization of polycarboxylate-based superplasticizer. J Adv Concr Technol 4(2):225–232

    Article  Google Scholar 

  • Pane I, Hansen W (2002) Concrete hydration and mechanical properties under nonisothermal conditions. ACI Mater J 99(6):534–542

    Google Scholar 

  • Probstein RF, Sengun MZ, Tseng TC (1994) Bimodal model of concentrated suspension viscosity for distributed particle sizes. J Rheol 38(4):811–829

    Article  Google Scholar 

  • Roncero J, Valls S, Gettu R (2002) Study of the influence of superplasticizers on the hydration of cement paste using nuclear magnetic resonance and X-ray diffraction techniques. Cem Concr Res 32(1):103–108

    Article  Google Scholar 

  • Sheinn AMM, Ho DWS, Tam CT (2002) Rheological model for self-compacting concrete-paste rheology. In: Proceedings of the 27th conference on our world in concrete and structures, Singapore, pp 28–29

    Google Scholar 

  • Struble L, Sun GK (1995) Viscosity of Portland cement paste as a function of concentration. Adv Cem Based Mater 2(2):62–69

    Article  Google Scholar 

  • Wang LJ, Huang FY, Ma XC (2008a) Experimental research on the saturation point of superplasticizers in cement based on fractal dimension. J Wuhan Univ Technol 30(2):28–31 (in Chinese)

    Google Scholar 

  • Wang LJ, Tan XQ, Cao ML (2008b) Study on flocculated cement based on fractal theory. J Shenyang Jianzhu Univ (Nat Sci) 23(1):82–84 (in Chinese)

    Google Scholar 

  • Wang DM, Zhang LR, Zhang WL et al (2013) Effects of superplasticizers on multi-level flocculation structure of fresh cement paste. J Build Mater 15(6):755–759 (in Chinese)

    Google Scholar 

  • Zhang LR, Wang DM, Zhang WL et al (2013) Observation of multi-level flocculation structure of fresh paste using laser scanning confocal microscopy. J Chin Electron Microsc Soc 32(3):231–236 (in Chinese)

    MathSciNet  Google Scholar 

  • Zhou JZQ, Uhlherr PHT, Luo FT (1995) Yield stress and maximum packing fraction of concentrated suspensions. Rheol Acta 34(6):544–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanrong Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, Y. (2018). Microstructure Model and Rheological Model of Fresh Cement Pastes. In: Study on Microstructure and Rheological Properties of Cement-Chemical Admixtures-Water Dispersion System at Early Stage. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4570-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4570-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4569-1

  • Online ISBN: 978-981-10-4570-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics