Ceramide Transport from the Endoplasmic Reticulum to the Trans Golgi Region at Organelle Membrane Contact Sites

  • Kentaro Hanada
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 997)


Lipids are the major constituents of all cell membranes and play dynamic roles in organelle structure and function. Although the spontaneous transfer of lipids between different membranes rarely occurs, lipids are appropriately transported between different organelles for their metabolism and to exert their functions in living cells. Proteins that have the biochemical capability to catalyze the intermembrane transfer of lipids are called lipid transfer proteins (LTPs). All organisms possess many types of LTPs. Recent studies revealed that LTPs are key players in the interorganelle transport of lipids at organelle membrane contact sites (MCSs). This chapter depicts how LTPs rationally operate at MCSs by using the ceramide transport protein CERT as a typical model for the LTP-mediated interorganelle transport of lipids.


Ceramide Sphingomyelin CERT Lipid transfer proteins 



I deeply thank my current and previous co-workers for their invaluable contributions to studies concerning CERT biology. This work was supported by AMED-CREST.


  1. Aaltonen MJ, Friedman JR, Osman C, Salin B, di Rago JP, Nunnari J, Langer T, Tatsuta T (2016) MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria. J Cell Biol 213:525–534CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bah A, Forman-Kay JD (2016) Modulation of intrinsically disordered protein function by post-translational modifications. J Biol Chem 291:6696–6705CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chang CL, Liou J (2015) Phosphatidylinositol 4,5-Bisphosphate Homeostasis Regulated by Nir2 and Nir3 Proteins at Endoplasmic Reticulum-Plasma Membrane Junctions. J Biol Chem 290:14289–14301CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cheruku SR, Xu Z, Dutia R, Lobel P, Storch J (2006) Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J Biol Chem 281:31594–31604CrossRefPubMedGoogle Scholar
  5. Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, Narayanaswamy P, Wenk MR, Nakatsu F et al (2015) PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349:428–432CrossRefPubMedPubMedCentralGoogle Scholar
  6. Clark BJ (2012) The mammalian START domain protein family in lipid transport in health and disease. J Endocrinol 212:257–275CrossRefPubMedGoogle Scholar
  7. Connerth M, Tatsuta T, Haag M, Klecker T, Westermann B, Langer T (2012) Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein. Science 338:815–818CrossRefPubMedGoogle Scholar
  8. D’Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC et al (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67CrossRefPubMedGoogle Scholar
  9. Deciphering Developmental Disorders S (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature 519:223–228Google Scholar
  10. Fugmann T, Hausser A, Schoffler P, Schmid S, Pfizenmaier K, Olayioye MA (2007) Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein. J Cell Biol 178:15–22CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fukasawa M, Nishijima M, Hanada K (1999) Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. J Cell Biol 144:673–685CrossRefPubMedPubMedCentralGoogle Scholar
  12. Funakoshi T, Yasuda S, Fukasawa M, Nishijima M, Hanada K (2000) Reconstitution of ATP- and cytosol-dependent transport of de novo synthesized ceramide to the site of sphingomyelin synthesis in semi-intact cells. J Biol Chem 275:29938–29945CrossRefPubMedGoogle Scholar
  13. Furuita K, Jee J, Fukada H, Mishima M, Kojima C (2010) Electrostatic interaction between oxysterol-binding protein and VAMP-associated protein A revealed by NMR and mutagenesis studies. J Biol Chem 285:12961–12970CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gatta AT, Wong LH, Sere YY, Calderon-Norena DM, Cockcroft S, Menon AK, Levine TP (2015) A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. Elife 4Google Scholar
  15. Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M, Milosevic I, Gracheva EO, Bagriantsev SN, Borgese N et al (2013) PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153:1494–1509CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gong X, Qian H, Zhou X, Wu J, Wan T, Cao P, Huang W, Zhao X, Wang X et al (2016) Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection. Cell 165:1467–1478CrossRefPubMedGoogle Scholar
  17. Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Maziere AM, Vieira OV, Mattjus P, Klumperman J, van Meer G et al (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179:101–115CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hammond GR, Machner MP, Balla T (2014) A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J Cell Biol 205:113–126CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hanada K (2006) Discovery of the molecular machinery CERT for endoplasmic reticulum-to-Golgi trafficking of ceramide. Mol Cell Biochem 286:23–31CrossRefPubMedGoogle Scholar
  20. Hanada K (2014) Co-evolution of sphingomyelin and the ceramide transport protein CERT. Biochim Biophys Acta 1841:704–719CrossRefPubMedGoogle Scholar
  21. Hanada K, Voelker D (2014) Interorganelle trafficking of lipids: preface for the thematic review series. Traffic 15:889–894CrossRefPubMedGoogle Scholar
  22. Hanada K, Hara T, Fukasawa M, Yamaji A, Umeda M, Nishijima M (1998) Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J Biol Chem 273:33787–33794CrossRefPubMedGoogle Scholar
  23. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–809CrossRefPubMedGoogle Scholar
  24. Hanada K, Kumagai K, Tomishige N, Kawano M (2007) CERT and intracellular trafficking of ceramide. Biochim Biophys Acta 1771:644–653CrossRefPubMedGoogle Scholar
  25. He J, Scott JL, Heroux A, Roy S, Lenoir M, Overduin M, Stahelin RV, Kutateladze TG (2011) Molecular basis of phosphatidylinositol 4-phosphate and ARF1 GTPase recognition by the FAPP1 pleckstrin homology (PH) domain. J Biol Chem 286:18650–18657CrossRefPubMedPubMedCentralGoogle Scholar
  26. Helle SC, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B (2013) Organization and function of membrane contact sites. Biochim Biophys Acta 1833:2526–2541CrossRefPubMedGoogle Scholar
  27. Holthuis JC, Menon AK (2014) Lipid landscapes and pipelines in membrane homeostasis. Nature 510:48–57CrossRefPubMedGoogle Scholar
  28. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ji C, Zhang Y, Xu P, Xu T, Lou X (2015) Nanoscale landscape of phosphoinositides revealed by specific pleckstrin homology (PH) domains using single-molecule superresolution imaging in the plasma membrane. J Biol Chem 290:26978–26993CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kaiser SE, Brickner JH, Reilein AR, Fenn TD, Walter P, Brunger AT (2005) Structural basis of FFAT motif-mediated ER targeting. Structure 13:1035–1045CrossRefPubMedGoogle Scholar
  31. Kallen CB, Billheimer JT, Summers SA, Stayrook SE, Lewis M, Strauss JF 3rd (1998) Steroidogenic acute regulatory protein (StAR) is a sterol transfer protein. J Biol Chem 273:26285–26288CrossRefPubMedGoogle Scholar
  32. Kawano M, Kumagai K, Nishijima M, Hanada K (2006) Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J Biol Chem 281:30279–30288CrossRefPubMedGoogle Scholar
  33. Kim YJ, Guzman-Hernandez ML, Wisniewski E, Balla T (2015) Phosphatidylinositol-Phosphatidic Acid Exchange by Nir2 at ER-PM Contact Sites Maintains Phosphoinositide Signaling Competence. Dev Cell 33:549–561CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kono N, Ohto U, Hiramatsu T, Urabe M, Uchida Y, Satow Y, Arai H (2013) Impaired alpha-TTP-PIPs interaction underlies familial vitamin E deficiency. Science 340:1106–1110CrossRefPubMedGoogle Scholar
  35. Kudo N, Kumagai K, Tomishige N, Yamaji T, Wakatsuki S, Nishijima M, Hanada K, Kato R (2008) Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc Natl Acad Sci U S A 105:488–493CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kumagai K, Yasuda S, Okemoto K, Nishijima M, Kobayashi S, Hanada K (2005) CERT mediates intermembrane transfer of various molecular species of ceramides. J Biol Chem 280:6488–6495CrossRefPubMedGoogle Scholar
  37. Kumagai K, Kawano M, Shinkai-Ouchi F, Nishijima M, Hanada K (2007) Interorganelle trafficking of ceramide is regulated by phosphorylation-dependent cooperativity between the PH and START domains of CERT. J Biol Chem 282:17758–17766CrossRefPubMedGoogle Scholar
  38. Kumagai K, Kawano-Kawada M, Hanada K (2014) Phosphoregulation of the ceramide transport protein CERT at serine 315 in the interaction with VAMP-associated protein (VAP) for inter-organelle trafficking of ceramide in mammalian cells. J Biol Chem 289:10748–10760CrossRefPubMedPubMedCentralGoogle Scholar
  39. Levine TP, Munro S (2002) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol 12:695–704CrossRefPubMedGoogle Scholar
  40. Loewen CJ, Roy A, Levine TP (2003) A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J 22:2025–2035CrossRefPubMedPubMedCentralGoogle Scholar
  41. Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M, Kaksonen M, Gavin AC (2013) Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501:257–261CrossRefPubMedGoogle Scholar
  42. Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B (2013) A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830–843CrossRefPubMedGoogle Scholar
  43. Mikitova V, Levine TP (2012) Analysis of the key elements of FFAT-like motifs identifies new proteins that potentially bind VAP on the ER, including two AKAPs and FAPP2. PLoS One 7:e30455CrossRefPubMedPubMedCentralGoogle Scholar
  44. Miyata N, Watanabe Y, Tamura Y, Endo T, Kuge O (2016) Phosphatidylserine transport by Ups2-Mdm35 in respiration-active mitochondria. J Cell Biol 214:77–88CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mogelsvang S, Marsh BJ, Ladinsky MS, Howell KE (2004) Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 5:338–345CrossRefPubMedGoogle Scholar
  46. Moser von Filseck J, Copic A, Delfosse V, Vanni S, Jackson CL, Bourguet W, Drin G (2015) Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 349:432–436CrossRefPubMedGoogle Scholar
  47. Murley A, Sarsam RD, Toulmay A, Yamada J, Prinz WA, Nunnari J (2015) Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J Cell Biol 209:539–548CrossRefPubMedPubMedCentralGoogle Scholar
  48. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648CrossRefPubMedGoogle Scholar
  49. Palade GE, Porter KR (1954) Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J Exp Med 100:641–656PubMedGoogle Scholar
  50. Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17:69–82CrossRefPubMedGoogle Scholar
  51. Potting C, Tatsuta T, Konig T, Haag M, Wai T, Aaltonen MJ, Langer T (2013) TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. Cell Metab 18:287–295CrossRefPubMedGoogle Scholar
  52. Prashek J, Truong T, Yao X (2013) Crystal structure of the pleckstrin homology domain from the ceramide transfer protein: implications for conformational change upon ligand binding. PLoS One 8:e79590CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rao RP, Yuan C, Allegood JC, Rawat SS, Edwards MB, Wang X, Merrill AH Jr, Acharya U, Acharya JK (2007) Ceramide transfer protein function is essential for normal oxidative stress response and lifespan. Proc Natl Acad Sci U S A 104:11364–11369CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rao RP, Scheffer L, Srideshikan SM, Parthibane V, Kosakowska-Cholody T, Masood MA, Nagashima K, Gudla P, Lockett S et al (2014) Ceramide transfer protein deficiency compromises organelle function and leads to senescence in primary cells. PLoS One 9:e92142CrossRefPubMedPubMedCentralGoogle Scholar
  55. Raya A, Revert F, Navarro S, Saus J (1999) Characterization of a novel type of serine/threonine kinase that specifically phosphorylates the human goodpasture antigen. J Biol Chem 274:12642–12649CrossRefPubMedGoogle Scholar
  56. Raya A, Revert-Ros F, Martinez-Martinez P, Navarro S, Rosello E, Vieites B, Granero F, Forteza J, Saus J (2000) Goodpasture antigen-binding protein, the kinase that phosphorylates the goodpasture antigen, is an alternatively spliced variant implicated in autoimmune pathogenesis. J Biol Chem 275:40392–40399CrossRefPubMedGoogle Scholar
  57. Roy A, Levine TP (2004) Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. J Biol Chem 279:44683–44689CrossRefPubMedGoogle Scholar
  58. Santiago-Tirado FH, Bretscher A (2011) Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi network. Trends Cell Biol 21:515–525CrossRefPubMedPubMedCentralGoogle Scholar
  59. Schauder CM, Wu X, Saheki Y, Narayanaswamy P, Torta F, Wenk MR, De Camilli P, Reinisch KM (2014) Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 510:552–555CrossRefPubMedPubMedCentralGoogle Scholar
  60. Simanshu DK, Kamlekar RK, Wijesinghe DS, Zou X, Zhai X, Mishra SK, Molotkovsky JG, Malinina L, Hinchcliffe EH et al (2013) Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids. Nature 500:463–467CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sugiki T, Takeuchi K, Yamaji T, Takano T, Tokunaga Y, Kumagai K, Hanada K, Takahashi H, Shimada I (2012) Structural basis for the Golgi association by the pleckstrin homology domain of the ceramide trafficking protein (CERT). J Biol Chem 287:33706–33718CrossRefPubMedPubMedCentralGoogle Scholar
  62. Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22PubMedGoogle Scholar
  63. Tamura Y, Onguka O, Hobbs AE, Jensen RE, Iijima M, Claypool SM, Sesaki H (2012) Role for two conserved intermembrane space proteins, Ups1p and Ups2p, [corrected] in intra-mitochondrial phospholipid trafficking. J Biol Chem 287:15205–15218CrossRefPubMedPubMedCentralGoogle Scholar
  64. Thorsell AG, Lee WH, Persson C, Siponen MI, Nilsson M, Busam RD, Kotenyova T, Schuler H, Lehtio L (2011) Comparative structural analysis of lipid binding START domains. PLoS One 6:e19521CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tomishige N, Kumagai K, Kusuda J, Nishijima M, Hanada K (2009) Casein kinase I{gamma}2 down-regulates trafficking of ceramide in the synthesis of sphingomyelin. Mol Biol Cell 20:348–357CrossRefPubMedPubMedCentralGoogle Scholar
  66. Uversky VN (2016) Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins. J Biol Chem 291:6681–6688CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vance JE (2015) Phospholipid synthesis and transport in mammalian cells. Traffic 16:1–18CrossRefPubMedGoogle Scholar
  68. Venditti R, Masone MC, Wilson C, De Matteis MA (2016) PI(4)P homeostasis: Who controls the controllers? Adv Biol Regul 60:105–114CrossRefPubMedGoogle Scholar
  69. Wang X, Rao RP, Kosakowska-Cholody T, Masood MA, Southon E, Zhang H, Berthet C, Nagashim K, Veenstra TK et al (2009) Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice. J Cell Biol 184:143–158CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yadav S, Garner K, Georgiev P, Li M, Gomez-Espinosa E, Panda A, Mathre S, Okkenhaug H, Cockcroft S et al (2015) RDGBalpha, a PtdIns-PtdOH transfer protein, regulates G-protein-coupled PtdIns(4,5)P2 signalling during Drosophila phototransduction. J Cell Sci 128:3330–3344CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yamaji T, Hanada K (2014) Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs. PLoS One 9:e88124CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yamaji T, Hanada K (2015) Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins. Traffic 16:101–122CrossRefPubMedGoogle Scholar
  73. Yamaji-Hasegawa A, Makino A, Baba T, Senoh Y, Kimura-Suda H, Sato SB, Terada N, Ohno S, Kiyokawa E et al (2003) Oligomerization and pore formation of a sphingomyelin-specific toxin, lysenin. J Biol Chem 278:22762–22770CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Biochemistry & Cell BiologyNational Institute of Infectious DiseasesTokyoJapan

Personalised recommendations