Advances Is Mesenchymal Stem Cell Application for Cardiovascular Disease Treatment

  • Tomasz JadczykEmail author
  • Ewa Bryndza Tfaily
  • Sachin Mishra
  • Marek Jędrzejek
  • Marta Bołoz
  • Parasuraman Padmanabhan
  • Wojciech Wojakowski
  • Zdeněk Stárek
  • Sylvain Martel
  • Balázs Gulyás
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Novel strategies are developed to optimize MSC function. Among them genetic modification is a promising solution to improve cell survival/engraftment after transplantation as well as to enhance cardioprotective function. Following genetic modification are described: Bcl-2, CREG, Hsp20, Akt, PI3K-2α, ILK, periostin, CXCR4, TNFR, Ang1, VEGF, Wnt11. HO-1, GSK-3β, IGF-1, SDF-1, GATA-4. Pharmacological optimization or preconditioned media are also investigated to overcome current limitation in stem cell therapy. Pharmacological agent pretreatment strategy covered in this chapter includes application of diazoxide, estradiol, lysophosphatidic acid, lovastatin, oxytocin, phorbol myristate acetate, tadalafil, trimetazidine. Cytokine and growth factor pretreatment discussed below includes stromal-derived factor 1 alpha, angiopoietin-1, insulin-like growth factor-1, transforming growth factor-α, bone morphogenetic protein-2, fibroblast growth factor-2 and insulin-like growth factor-1 cocktail, interleukin-1β and transforming growth factor-β combination. Moreover, application of including injectable hydrogels are presented including cell containing injectable biomaterials, acellular scaffolds with incorporated bio-agents, and co-application of cells and bio-agents


Mesenchymal stem cells Genetically modified stem cells Pharmacologically optimized stem cells Injectable hydrogels 


  1. 1.
    Bao C et al (2010) Enhancement of the survival of engrafted mesenchymal stem cells in the ischemic heart by TNFR gene transfection. Biochem Cell Biol 88(4):629–634CrossRefGoogle Scholar
  2. 2.
    Suzuki M et al (2003) Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice. Circulation 107(5):682–685CrossRefGoogle Scholar
  3. 3.
    Wakahara N et al (2004) Difference in the cardioprotective mechanisms between ischemic preconditioning and pharmacological preconditioning by diazoxide in rat hearts. Circ J 68(2):156–162CrossRefGoogle Scholar
  4. 4.
    Cui X et al (2010) Transplantation of mesenchymal stem cells preconditioned with diazoxide, a mitochondrial ATP-sensitive potassium channel opener, promotes repair of myocardial infarction in rats. Tohoku J Exp Med 220(2):139–147CrossRefGoogle Scholar
  5. 5.
    Dubey RK, Tofovic SP, Jackson EK (2004) Cardiovascular pharmacology of estradiol metabolites. J Pharmacol Exp Ther 308(2):403–409CrossRefGoogle Scholar
  6. 6.
    Dubey RK, Jackson EK (2001) Cardiovascular protective effects of 17beta-estradiol metabolites. J Appl Physiol 91(4):1868–1883Google Scholar
  7. 7.
    Erwin GS et al (2009) Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia. J Surg Res 152(2):319–324CrossRefGoogle Scholar
  8. 8.
    Morris AJ et al (2009) Regulation of blood and vascular cell function by bioactive lysophospholipids. J Thromb Haemost 1:38–43CrossRefGoogle Scholar
  9. 9.
    Lin ME, Herr DR, Chun J (2010) Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat 91(3–4):130–138CrossRefGoogle Scholar
  10. 10.
    Liu X et al (2009) Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo. Stem Cells Dev 18(7):947–954CrossRefGoogle Scholar
  11. 11.
    Kazemipour M et al (2012) Simultaneous determination of lovastatin and niacin in tablet by first and third derivative spectrophotometry and H-point standard addition methods. Res Pharm Sci 7(2):95–102Google Scholar
  12. 12.
    Alberts AW (1988) Discovery, biochemistry and biology of lovastatin. Am J Cardiol 62(15):10J–15JCrossRefGoogle Scholar
  13. 13.
    Xu R et al (2008) Lovastatin protects mesenchymal stem cells against hypoxia-and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2. J Cell Biochem 103(1):256–269CrossRefGoogle Scholar
  14. 14.
    Jankowski M et al (2010) Cardiac oxytocin receptor blockade stimulates adverse cardiac remodeling in ovariectomized spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 299(2)Google Scholar
  15. 15.
    Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683Google Scholar
  16. 16.
    Florian M, Jankowski M, Gutkowska J (2010) Oxytocin increases glucose uptake in neonatal rat cardiomyocytes. Endocrinology 151(2):482–491CrossRefGoogle Scholar
  17. 17.
    Kim YS et al (2010) Promigratory activity of oxytocin on umbilical cord blood-derived mesenchymal stem cells. Artif Organs 34(6):453–461CrossRefGoogle Scholar
  18. 18.
    Kim YS et al (2012) Priming of mesenchymal stem cells with oxytocin enhances the cardiac repair in ischemia/reperfusion injury. Cells Tissues Organs 195(5):428–442CrossRefGoogle Scholar
  19. 19.
    Bae CH et al (2012) Phorbol 12-Myristate 13-Acetate induces MUC16 expression via PKCdelta and p38 in human airway epithelial cells. Clin Exp Otorhinolaryngol 5(3):161–169CrossRefGoogle Scholar
  20. 20.
    Song H et al (2011) Cardiomyocytes from phorbol myristate acetate-activated mesenchymal stem cells restore electromechanical function in infarcted rat hearts. Proc Natl Acad Sci USA 108(1):296–301CrossRefGoogle Scholar
  21. 21.
    Rao YJ, Xi L (2009) Pivotal effects of phosphodiesterase inhibitors on myocyte contractility and viability in normal and ischemic hearts. Acta Pharmacol Sin 30(1):1–24CrossRefGoogle Scholar
  22. 22.
    Haider H et al (2010) Phosphodiesterase inhibition with tadalafil provides longer and sustained protection of stem cells. Am J Physiol Heart Circ Physiol 299(5):10CrossRefGoogle Scholar
  23. 23.
    Lopaschuk GD et al (2003) Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Circ Res 93(3):17CrossRefGoogle Scholar
  24. 24.
    Wisel S et al (2009) Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther 329(2):543–550CrossRefGoogle Scholar
  25. 25.
    Xu X et al (2013) Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization. Cells Tissues Organs 197(2):103–113CrossRefGoogle Scholar
  26. 26.
    Pasha Z et al (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77(1):134–142CrossRefGoogle Scholar
  27. 27.
    Liu XB et al (2012) Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. J Zhejiang Univ Sci B 13(8):616–623CrossRefGoogle Scholar
  28. 28.
    Conti E et al (2011) IGF-1 and atherothrombosis: relevance to pathophysiology and therapy. Clin Sci 120(9):377–402CrossRefGoogle Scholar
  29. 29.
    Enoki C et al (2010) Enhanced mesenchymal cell engraftment by IGF-1 improves left ventricular function in rats undergoing myocardial infarction. Int J Cardiol 138(1):9–18CrossRefGoogle Scholar
  30. 30.
    Tamama K et al (2006) Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells 24(3):686–695CrossRefGoogle Scholar
  31. 31.
    Herrmann JL et al (2010) Postinfarct intramyocardial injection of mesenchymal stem cells pretreated with TGF-alpha improves acute myocardial function. Am J Physiol Regul Integr Comp Physiol 299(1):19CrossRefGoogle Scholar
  32. 32.
    Herrmann JL et al (2011) Transforming growth factor-alpha enhances stem cell-mediated postischemic myocardial protection. Ann Thorac Surg 92(5):1719–1725CrossRefGoogle Scholar
  33. 33.
    Herrmann JL et al (2012) TGF-alpha equalizes age disparities in stem cell-mediated cardioprotection. J Surg Res 176(2):386–394CrossRefGoogle Scholar
  34. 34.
    Hahn JY et al (2008) Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J Am Coll Cardiol 51(9):933–943CrossRefGoogle Scholar
  35. 35.
    Luo Y et al (2012) Pretreating mesenchymal stem cells with interleukin-1beta and transforming growth factor-beta synergistically increases vascular endothelial growth factor production and improves mesenchymal stem cell-mediated myocardial protection after acute ischemia. Surgery 151(3):353–363CrossRefGoogle Scholar
  36. 36.
    Kean TJ et al (2012) Development of a peptide-targeted, myocardial ischemia-homing, mesenchymal stem cell. J Drug Target 20(1):23–32CrossRefGoogle Scholar
  37. 37.
    Chacko SM et al (2010) Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol 299(6):22CrossRefGoogle Scholar
  38. 38.
    Yan F et al (2012) Hypoxic preconditioning improves survival of cardiac progenitor cells: role of stromal cell derived factor-1alpha-CXCR4 axis. PLoS ONE 7(7):18Google Scholar
  39. 39.
    Pereira MJ et al (2011) Sensing the cardiac environment: exploiting cues for regeneration. J Cardiovasc Transl Res 4(5):616–630CrossRefGoogle Scholar
  40. 40.
    Hu X et al (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135(4):799–808CrossRefGoogle Scholar
  41. 41.
    Wang JA et al (2009) Anoxic preconditioning: a way to enhance the cardioprotection of mesenchymal stem cells. Int J Cardiol 133(3):410–412. doi: 10.1016/j.ijcard.2007.11.096 Epub: 29 Jan 2008, WydanieCrossRefGoogle Scholar
  42. 42.
    Ruwhof C et al (2000) Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts. Mol Cell Biochem 208(1–2):89–98CrossRefGoogle Scholar
  43. 43.
    Kurazumi H et al (2011) The effects of mechanical stress on the growth, differentiation, and paracrine factor production of cardiac stem cells. PLoS ONE 6(12):28CrossRefGoogle Scholar
  44. 44.
    Salameh A et al (2010) Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ Res 106(10):1592–1602CrossRefGoogle Scholar
  45. 45.
    Sun Y, Chen CS, Fu J (2012) Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 41:519–542CrossRefGoogle Scholar
  46. 46.
    Maul TM et al (2011) Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 10(6):939–953CrossRefGoogle Scholar
  47. 47.
    Lu WN et al (2009) Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Part A 15(6):1437–1447CrossRefGoogle Scholar
  48. 48.
    Guo HD et al (2010) Transplantation of marrow-derived cardiac stem cells carried in designer self-assembling peptide nanofibers improves cardiac function after myocardial infarction. Biochem Biophys Res Commun 399(1):42–48CrossRefGoogle Scholar
  49. 49.
    Landa N et al (2008) Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117(11):1388–1396CrossRefGoogle Scholar
  50. 50.
    Christman KL et al (2004) Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 10(3–4):403–409CrossRefGoogle Scholar
  51. 51.
    Martens TP et al (2009) Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant 18(3):297–304MathSciNetCrossRefGoogle Scholar
  52. 52.
    Tsur-Gang O et al (2009) The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30(2):189–195CrossRefGoogle Scholar
  53. 53.
    Kim IY et al (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26(1):1–21MathSciNetCrossRefGoogle Scholar
  54. 54.
    Lu S et al (2010) Both the transplantation of somatic cell nuclear transfer- and fertilization-derived mouse embryonic stem cells with temperature-responsive chitosan hydrogel improve myocardial performance in infarcted rat hearts. Tissue Eng Part A 16(4):1303–1315CrossRefGoogle Scholar
  55. 55.
    Chekanov V et al (2003) Transplantation of autologous endothelial cells induces angiogenesis. Pacing Clin Electrophysiol 26(1 Pt 2):496–499CrossRefGoogle Scholar
  56. 56.
    Ryu JH et al (2005) Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 26(3):319–326CrossRefGoogle Scholar
  57. 57.
    Castells-Sala C, Semino CE (2012) Biomaterials for stem cell culture and seeding for the generation and delivery of cardiac myocytes. Curr Opin Organ Transplant 17(6):681–687CrossRefGoogle Scholar
  58. 58.
    Zouein FA et al (2012) Post-infarct biomaterials, left ventricular remodeling, and heart failure: is good good enough? Congest Heart Fail 18(5):284–290CrossRefGoogle Scholar
  59. 59.
    Lin YD et al (2012) Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci Transl Med 4(146):3003841CrossRefGoogle Scholar
  60. 60.
    LaNasa SM, Bryant SJ (2009) Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. Acta Biomater 5(8):2929–2938CrossRefGoogle Scholar
  61. 61.
    Mihardja SS, Sievers RE, Lee RJ (2008) The effect of polypyrrole on arteriogenesis in an acute rat infarct model. Biomaterials 29(31):4205–4210CrossRefGoogle Scholar
  62. 62.
    Huang NF et al (2005) Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng 11(11–12):1860–1866CrossRefGoogle Scholar
  63. 63.
    Shen X, Tanaka K, Takamori A (2009) Coronary arteries angiogenesis in ischemic myocardium: biocompatibility and biodegradability of various hydrogels. Artif Organs 33(10):781–787CrossRefGoogle Scholar
  64. 64.
    Tulloch NL et al (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47–59CrossRefGoogle Scholar
  65. 65.
    Guo HD et al (2011) Transplantation of marrow-derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction. Tissue Eng Part A 17(1–2):45–58CrossRefGoogle Scholar
  66. 66.
    Swartz DD, Russell JA, Andreadis ST (2005) Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol 288(3):14Google Scholar
  67. 67.
    Lee OK (2008) Fibrin glue as a vehicle for mesenchymal stem cell delivery in bone regeneration. J Chin Med Assoc 71(2):59–61CrossRefGoogle Scholar
  68. 68.
    Bach TL et al (1998) VE-Cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 238(2):324–334CrossRefGoogle Scholar
  69. 69.
    Zhang X et al (2010) Preservation of the cardiac function in infarcted rat hearts by the transplantation of adipose-derived stem cells with injectable fibrin scaffolds. Exp Biol Med 235(12):1505–1515CrossRefGoogle Scholar
  70. 70.
    Zhang G et al (2006) A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Eng 12(1):9–19MathSciNetCrossRefGoogle Scholar
  71. 71.
    Zhang G et al (2008) Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng Part A 14(6):1025–1036CrossRefGoogle Scholar
  72. 72.
    Taylor SJ, McDonald JW 3rd, Sakiyama-Elbert SE (2004) Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Control Release 98(2):281–294CrossRefGoogle Scholar
  73. 73.
    Shi C et al (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133(2):185–192CrossRefGoogle Scholar
  74. 74.
    Liu Z et al (2012) The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials 33(11):3093–3106CrossRefGoogle Scholar
  75. 75.
    Gerecht S et al (2007) Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 104(27):11298–11303CrossRefGoogle Scholar
  76. 76.
    Yang MC et al (2010) The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin—hyaluronic acid cardiac patches. Biomaterials 31(5):854–862CrossRefGoogle Scholar
  77. 77.
    Chang CY et al (2012) Hyaluronic acid-human blood hydrogels for stem cell transplantation. Biomaterials 33(32):8026–8033CrossRefGoogle Scholar
  78. 78.
    Park D et al (2012) Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFbeta receptor interaction via CD44-PKCdelta. Mol Cells 33(6):563–574CrossRefGoogle Scholar
  79. 79.
    Fiumana E et al (2013) Localization of mesenchymal stem cells grafted with a hyaluronan-based scaffold in the infarcted heart. J Surg Res 179(1):27CrossRefGoogle Scholar
  80. 80.
    Kim BS et al (2010) Improvement of stem cell viability in hyaluronic acid hydrogels using dextran microspheres. J Biomater Sci Polym Ed 21(13):1701–1711CrossRefGoogle Scholar
  81. 81.
    Dai W et al (2005) Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J Am Coll Cardiol 46(4):714–719CrossRefGoogle Scholar
  82. 82.
    Acarregui A et al (2012) Hydrogel-based scaffolds for enclosing encapsulated therapeutic cells. Biomacromol 11:11Google Scholar
  83. 83.
    Murua A et al (2011) Emerging technologies in the delivery of erythropoietin for therapeutics. Med Res Rev 31(2):284–309CrossRefGoogle Scholar
  84. 84.
    Prestwich GD et al (2012) The translational imperative: making cell therapy simple and effective. Acta Biomater 8(12):4200–4207CrossRefGoogle Scholar
  85. 85.
    Chung EJ, Jakus AE, Shah RN (2013) In situ forming collagen-hyaluronic acid membrane structures: mechanism of self-assembly and applications in regenerative medicine. Acta Biomater 9(2):5153–5161CrossRefGoogle Scholar
  86. 86.
    Dahlmann J et al (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34(4):940–951CrossRefGoogle Scholar
  87. 87.
    Huang Z et al (2011) In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohyd Polym 85(1):261–267CrossRefGoogle Scholar
  88. 88.
    Le Visage C et al (2012) Mesenchymal stem cell delivery into rat infarcted myocardium using a porous polysaccharide-based scaffold: a quantitative comparison with endocardial injection. Tissue Eng Part A 18(1–2):35–44CrossRefGoogle Scholar
  89. 89.
    Paul A et al (2011) Superior cell delivery features of genipin crosslinked polymeric microcapsules: preparation, in vitro characterization and pro-angiogenic applications using human adipose stem cells. Mol Biotechnol 48(2):116–127CrossRefGoogle Scholar
  90. 90.
    Wall ST et al (2010) Biomimetic matrices for myocardial stabilization and stem cell transplantation. J Biomed Mater Res A 95(4):1055–1066MathSciNetCrossRefGoogle Scholar
  91. 91.
    Li XY et al (2010) Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology 115(3):194–199CrossRefGoogle Scholar
  92. 92.
    Wang H et al (2012) Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodelling and function of myocardial infarction. J Cell Mol Med 16(6):1310–1320CrossRefGoogle Scholar
  93. 93.
    Wu DQ et al (2008) Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation. Langmuir 24(18):10306–10312CrossRefGoogle Scholar
  94. 94.
    Jiang XJ et al (2009) Injection of a novel synthetic hydrogel preserves left ventricle function after myocardial infarction. J Biomed Mater Res A 90(2):472–477CrossRefGoogle Scholar
  95. 95.
    Leon EJ et al (1998) Mechanical properties of a self-assembling oligopeptide matrix. J Biomater Sci Polym Ed 9(3):297–312CrossRefGoogle Scholar
  96. 96.
    Koutsopoulos S (2012) Molecular fabrications of smart nanobiomaterials and applications in personalized medicine. Adv Drug Deliv Rev 64(13):1459–1476CrossRefGoogle Scholar
  97. 97.
    Cui XJ et al (2010) Transplantation of mesenchymal stem cells with self-assembling polypeptide scaffolds is conducive to treating myocardial infarction in rats. Tohoku J Exp Med 222(4):281–289CrossRefGoogle Scholar
  98. 98.
    Jung JP, Moyano JV, Collier JH (2011) Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices. Integr Biol 3(3):185–196CrossRefGoogle Scholar
  99. 99.
    Ruvinov E, Leor J, Cohen S (2011) The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32(2):565–578CrossRefGoogle Scholar
  100. 100.
    Hao X et al (2007) Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res 75(1):178–185CrossRefGoogle Scholar
  101. 101.
    Schwarz ER et al (2000) Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat–angiogenesis and angioma formation. J Am Coll Cardiol 35(5):1323–1330CrossRefGoogle Scholar
  102. 102.
    Christman KL et al (2005) Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials 26(10):1139–1144CrossRefGoogle Scholar
  103. 103.
    Jeon O et al (2005) Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release 105(3):249–259CrossRefGoogle Scholar
  104. 104.
    Yang HS et al (2010) Delivery of basic fibroblast growth factor using heparin-conjugated fibrin for therapeutic angiogenesis. Tissue Eng Part A 16(6):2113–2119CrossRefGoogle Scholar
  105. 105.
    Zisch AH et al (2001) Covalently conjugated VEGF–fibrin matrices for endothelialization. J Control Release 72(1–3):101–113CrossRefGoogle Scholar
  106. 106.
    Sakakibara Y et al (2003) Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardiothorac Surg 24(1):105–111CrossRefGoogle Scholar
  107. 107.
    Yamamoto T et al (2001) Intramyocardial delivery of basic fibroblast growth factor-impregnated gelatin hydrogel microspheres enhances collateral circulation to infarcted canine myocardium. Jpn Circ J 65(5):439–444CrossRefGoogle Scholar
  108. 108.
    Iwakura A et al (2003) Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels 18(2):93–99CrossRefGoogle Scholar
  109. 109.
    Liu Y et al (2006) Effects of basic fibroblast growth factor microspheres on angiogenesis in ischemic myocardium and cardiac function: analysis with dobutamine cardiovascular magnetic resonance tagging. Eur J Cardiothorac Surg 30(1):103–107CrossRefGoogle Scholar
  110. 110.
    Sakakibara Y et al (2002) Prevascularization with gelatin microspheres containing basic fibroblast growth factor enhances the benefits of cardiomyocyte transplantation. J Thorac Cardiovasc Surg 124(1):50–56CrossRefGoogle Scholar
  111. 111.
    Cittadini A et al (2011) Complementary therapeutic effects of dual delivery of insulin-like growth factor-1 and vascular endothelial growth factor by gelatin microspheres in experimental heart failure. Eur J Heart Fail 13(12):1264–1274CrossRefGoogle Scholar
  112. 112.
    Wang H et al (2010) Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant 29(8):881–887CrossRefGoogle Scholar
  113. 113.
    Fujita M et al (2007) Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model. Wound Repair Regen 15(1):58–65CrossRefGoogle Scholar
  114. 114.
    Binsalamah ZM et al (2011) Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model. Int J Nanomed 6:2667–2678Google Scholar
  115. 115.
    Chu H et al (2013) The effect of a heparin-based coacervate of fibroblast growth factor-2 on scarring in the infarcted myocardium. Biomaterials 34(6):1747–1756CrossRefGoogle Scholar
  116. 116.
    Reis LA et al (2012) A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta Biomater 8(3):1022–1036CrossRefGoogle Scholar
  117. 117.
    Hoare T et al (2011) Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett 11(3):1395–1400CrossRefGoogle Scholar
  118. 118.
    Garbern JC et al (2011) Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32(9):2407–2416CrossRefGoogle Scholar
  119. 119.
    Wang T et al (2009) The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials 30(25):4161–4167CrossRefGoogle Scholar
  120. 120.
    He YY et al (2012) Intramyocardial delivery of HMGB1 by a novel thermosensitive hydrogel attenuates cardiac remodeling and improves cardiac function after myocardial infarction. J Cardiovasc Pharmacol 26:26Google Scholar
  121. 121.
    Kraehenbuehl TP et al (2011) Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials 32(4):1102–1109CrossRefGoogle Scholar
  122. 122.
    Kwon JS et al (2009) Enhanced angiogenesis mediated by vascular endothelial growth factor plasmid-loaded thermo-responsive amphiphilic polymer in a rat myocardial infarction model. J Control Release 138(2):168–176CrossRefGoogle Scholar
  123. 123.
    Garripelli VK et al (2010) A novel thermosensitive polymer with pH-dependent degradation for drug delivery. Acta Biomater 6(2):477–485CrossRefGoogle Scholar
  124. 124.
    Oh KS et al (2010) Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart. J Control Release 146(2):207–211CrossRefGoogle Scholar
  125. 125.
    Baumann L et al (2012) A novel, biased-like SDF-1 derivative acts synergistically with starPEG-based heparin hydrogels and improves eEPC migration in vitro. J Control Release 162(1):68–75CrossRefGoogle Scholar
  126. 126.
    Davis ME et al (2006) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci USA 103(21):8155–8160CrossRefGoogle Scholar
  127. 127.
    Hsieh PC et al (2006) Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 116(1):237–248CrossRefGoogle Scholar
  128. 128.
    Guo HD et al (2012) Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction. Biochem Biophys Res Commun 424(1):105–111CrossRefGoogle Scholar
  129. 129.
    Webber MJ et al (2010) Capturing the stem cell paracrine effect using heparin-presenting nanofibres to treat cardiovascular diseases. J Tissue Eng Regen Med 4(8):600–610CrossRefGoogle Scholar
  130. 130.
    Wang SF et al (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromol 6(6):3067–3072CrossRefGoogle Scholar
  131. 131.
    Lee J et al (2009) Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction. J Control Release 137(3):196–202CrossRefGoogle Scholar
  132. 132.
    Purcell BP et al (2012) Synergistic effects of SDF-1alpha chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium. Biomaterials 33(31):7849–7857CrossRefGoogle Scholar
  133. 133.
    Padin-Iruegas ME et al (2009) Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120(10):876–887CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Tomasz Jadczyk
    • 1
    Email author
  • Ewa Bryndza Tfaily
    • 2
  • Sachin Mishra
    • 3
  • Marek Jędrzejek
    • 4
  • Marta Bołoz
    • 5
  • Parasuraman Padmanabhan
    • 6
  • Wojciech Wojakowski
    • 7
  • Zdeněk Stárek
    • 8
  • Sylvain Martel
    • 9
  • Balázs Gulyás
    • 10
  1. 1.Third Division of CardiologyMedical University of SilesiaKatowicePoland
  2. 2.Department of Orthopaedic SurgeryUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
  4. 4.Third Division of CardiologyMedical University of SilesiaKatowicePoland
  5. 5.Third Division of CardiologyMedical University of SilesiaKatowicePoland
  6. 6.Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
  7. 7.Third Division of CardiologyMedical University of SilesiaKatowicePoland
  8. 8.1st Department of Internal Medicine/Cardioangiology, International Clinical Research CenterSt. Anne’s University HospitalBrnoCzech Republic
  9. 9.NanoRobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical EngineeringPolytechnique MontréalMontrealCanada
  10. 10.Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore

Personalised recommendations