Advertisement

Mechanistic Studies on Copper-Catalyzed sp3-C–H Cross-Dehydrogenative Coupling Reaction

  • Gui-Juan ChengEmail author
Chapter
  • 333 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter introduces a detailed computational study on two Cu-catalyzed sp3-C–H cross-dehydrogenative coupling (CDC) reactions using O2 and tert-butyl hydroperoxide (TBHP) as oxidant, respectively. Plausible reaction mechanisms including the single electron transfer (SET) mechanism, a novel mechanism which O2 directly involves in C–H bond cleavage, CuIII mechanism and radical mechanism were considered. Benchmark studies were performed to select a reliable computational method to describe the SET process.

Keywords

Kinetic Isotope Effect Single Electron Transfer Potential Energy Profile Radical Pathway Iminium Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    (a) Hartley FR (ed) (1985) S.P. carbon–carbon bond formation using organometallic compounds, vol 3. Marcel Dekker, New York. (b) Corey EJ, Cheng XM (eds) (1989) The logic of chemical synthesis. Wiley, New YorkGoogle Scholar
  2. 2.
    Heck RF (1979) Acc Chem Res 12:146CrossRefGoogle Scholar
  3. 3.
    Dieck HA, Heck FR (1975) J Organomet Chem 93:259CrossRefGoogle Scholar
  4. 4.
    Miyaura N, Suzuki A (1995) Chem Rev 95:2457CrossRefGoogle Scholar
  5. 5.
    King AO, Okukado N, Negishi E-I (1977) J Chem Soc Chem Commun 683Google Scholar
  6. 6.
    Milstein D, Stille JK (1978) J Am Chem Soc 100:3636CrossRefGoogle Scholar
  7. 7.
    Scheuermann CJ (2010) Chem Asian J 5:436CrossRefGoogle Scholar
  8. 8.
    Li Z, Li C-J (2005) J Am Chem Soc 127:3672CrossRefGoogle Scholar
  9. 9.
    Li C-J (2008) Acc Chem Res 42:335CrossRefGoogle Scholar
  10. 10.
    Li Z, Bohle DS, Li C-J (2006) Proc Natl Acad Sci 103:8928CrossRefGoogle Scholar
  11. 11.
    Yeung CS, Dong VM (2011) Chem Rev 111:1215CrossRefGoogle Scholar
  12. 12.
    Shi W, Liu C, Lei A (2011) Chem Soc Rev 40:2761CrossRefGoogle Scholar
  13. 13.
    Cho SH, Kim JY, Kwak J, Chang S (2011) Chem Soc Rev 40:5068CrossRefGoogle Scholar
  14. 14.
    Wei C, Li C-J (2002) Green Chem 4:39CrossRefGoogle Scholar
  15. 15.
    Li Z, Li C-J (2005) J Am Chem Soc 127:6968CrossRefGoogle Scholar
  16. 16.
    Li C-J, Wei C (2012) Chem Commun 268Google Scholar
  17. 17.
    Koradin C, Polborn K, Knochel P (2002) Angew Chem Int Ed 41:2535CrossRefGoogle Scholar
  18. 18.
    Basle O, Li C-J (2007) Green Chem 9:1047Google Scholar
  19. 19.
    Boess E, Sureshkumar D, Sud A, Wirtz C, Fares C, Klussmann M (2011) J Am Chem Soc 133:8106CrossRefGoogle Scholar
  20. 20.
    Ashenhurst JA (2010) Chem Soc Rev 39:540CrossRefGoogle Scholar
  21. 21.
    Negishi E-I, Hata M, Xu C (2000) Org Lett 2:3687CrossRefGoogle Scholar
  22. 22.
    Zhang C, Tang C, Jiao N (2012) Chem Soc Rev 41:3464CrossRefGoogle Scholar
  23. 23.
    Wendlandt AE, Suess AM, Stahl SS (2011) Angew Chem Int Ed 50:11062CrossRefGoogle Scholar
  24. 24.
    Huber SM, Moughal Shahi AR, Aquilante F, Cramer CJ, Gagliardi L (2009) J Chem Theory Comput 5:2967Google Scholar
  25. 25.
    Schröder D, Fiedler A, Herrmann WA, Schwarz H (1995) Angew Chem Int Ed Engl 34:2517CrossRefGoogle Scholar
  26. 26.
    Poli R, Harvey JN (2003) Chem Soc Rev 32:1CrossRefGoogle Scholar
  27. 27.
    Landis CR, Morales CM, Stahl SS (2004) J Am Chem Soc 126:16302CrossRefGoogle Scholar
  28. 28.
    Wang R, Zhang X-H, Chen S-J, Yu X, Wang C-S, Beach DB, Wu Y-D, Xue Z-L (2005) J Am Chem Soc 127:5204CrossRefGoogle Scholar
  29. 29.
    Keith JM, Nielsen RJ, Oxgaard J, Goddard WA (2005) J Am Chem Soc 127:13172CrossRefGoogle Scholar
  30. 30.
    Jones GO, Liu P, Houk KN, Buchwald SL (2010) J Am Chem Soc 132:6205CrossRefGoogle Scholar
  31. 31.
    Yu H-Z, Jiang Y-Y, Fu Y, Liu L (2010) J Am Chem Soc 132:18078CrossRefGoogle Scholar
  32. 32.
    Gaussian 09, Revision A.2, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., WallingfordGoogle Scholar
  33. 33.
    Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  34. 34.
    Zhang X, Schwarz H (2011) Theor Chem Acc 129:389CrossRefGoogle Scholar
  35. 35.
    Zhang X, Schwarz H (2010) Chem Eur J 16:5882CrossRefGoogle Scholar
  36. 36.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  37. 37.
    Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829CrossRefGoogle Scholar
  38. 38.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378CrossRefGoogle Scholar
  39. 39.
    Fukui K (1970) J Phys Chem 74:4161CrossRefGoogle Scholar
  40. 40.
    Harvey JN, Aschi M, Schwarz H, Koch W (1998) Theor Chem Acc 99:95CrossRefGoogle Scholar
  41. 41.
    Legault CY (2009) CYLView, 1.0b. Université de Sherbrooke, Canada. http://www.cylview.org
  42. 42.
    Gherman B, Heppner D, Tolman W, Cramer C (2006) J Biol Inorg Chem 11:197CrossRefGoogle Scholar
  43. 43.
    Aboelella NW, Gherman BF, Hill LMR, York JT, Holm N, Young VG, Cramer CJ, Tolman WB (2006) J Am Chem Soc 128:3445CrossRefGoogle Scholar
  44. 44.
    Gherman BF, Tolman WB, Cramer CJ (2006) J Comput Chem 27:1950Google Scholar
  45. 45.
    Kunishita A, Scanlon JD, Ishimaru H, Honda K, Ogura T, Suzuki M, Cramer CJ, Itoh S (2008) Inorg Chem 47:8222CrossRefGoogle Scholar
  46. 46.
    Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757CrossRefGoogle Scholar
  47. 47.
    Lanci MP, Smirnov VV, Cramer CJ, Gauchenova EV, Sundermeyer J, Roth JP (2007) J Am Chem Soc 129:14697CrossRefGoogle Scholar
  48. 48.
    Hong S, Huber SM, Gagliardi L, Cramer CC, Tolman WB (2007) J Am Chem Soc 129:14190CrossRefGoogle Scholar
  49. 49.
    Bar-Nahum I, Gupta AK, Huber SM, Ertem MZ, Cramer CJ, Tolman WB (2009) J Am Chem Soc 131:2812CrossRefGoogle Scholar
  50. 50.
    Cramer CJ, Gour JR, Kinal A, Wloch M, Piecuch P, Moughal Shahi AR, Gagliardi L (2008) J Phys Chem A 112:3754Google Scholar
  51. 51.
    Fukuzumi S, Kitano T (1991) J Chem Soc Perkin Trans 2:41CrossRefGoogle Scholar
  52. 52.
    Wayner DDM, McPhee DJ, Griller D (1988) J Am Chem Soc 110:132CrossRefGoogle Scholar
  53. 53.
    Fu Y, Liu L, Yu H-Z, Wang Y-M, Guo Q-X (2005) J Am Chem Soc 127:7227CrossRefGoogle Scholar
  54. 54.
    Davis AP, Fry AJ (2010) J Phys Chem A 114:12299CrossRefGoogle Scholar
  55. 55.
    Credendino R, Falivene L, Cavallo L (2012) J Am Chem Soc 134:8127CrossRefGoogle Scholar
  56. 56.
    Baik M-H, Friesner RA (2002) J Phys Chem A 106:7407CrossRefGoogle Scholar
  57. 57.
    Speelman AL, Gillmore JG (2008) J Phys Chem A 112:5684CrossRefGoogle Scholar
  58. 58.
    Bartmess JE (1994) J Phys Chem 98:6420CrossRefGoogle Scholar
  59. 59.
    Trasatti S (1986) Pure Appl Chem 58:955Google Scholar
  60. 60.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157CrossRefGoogle Scholar
  61. 61.
    Popp BV, Wendlandt JE, Landis CR, Stahl SS (2007) Angew Chem Int Ed 46:601CrossRefGoogle Scholar
  62. 62.
    Popp BV, Stahl SS (2007) J Am Chem Soc 129:4410CrossRefGoogle Scholar
  63. 63.
    Ranjit S, Lee R, Heryadi D, Shen C, Wu JE, Zhang P, Huang K-W, Liu X (2011) J Org Chem 76:8999CrossRefGoogle Scholar
  64. 64.
    Randles JEB (1941) J Chem Soc 802Google Scholar
  65. 65.
    Matyjaszewski K, Tsarevsky NV, Braunecker WA, Dong H, Huang J, Jakubowski W, Kwak Y, Nicolay R, Tang W, Yoon JA (2007) Macromolecules 40:7795CrossRefGoogle Scholar
  66. 66.
    Fenwick F (1926) J Am Chem Soc 48:860CrossRefGoogle Scholar
  67. 67.
    Boess E, Schmitz C, Klussmann M (2012) J Am Chem Soc 134:5317CrossRefGoogle Scholar
  68. 68.
    Smirnov VV, Roth JP (2006) J Am Chem Soc 128:16424CrossRefGoogle Scholar
  69. 69.
    Roth JP (2007) Curr Opin Chem Biol 11:142CrossRefGoogle Scholar
  70. 70.
    Santoro S, Liao R-Z, Himo F (2011) J Org Chem 76:9246CrossRefGoogle Scholar
  71. 71.
    Cheng G-J, Song L-J, Yang Y-F, Zhang X, Wiest O, Wu Y-D (2013) ChemPlusChem 78:943CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Laboratory of Computational Chemistry and Drug Design and Laboratory of Chemical GenomicsPeking University Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations