Advertisement

Mechanistic Studies on Pd(MPAA)-Catalyzed Enantioselective C–H Activation Reactions

  • Gui-Juan ChengEmail author
Chapter
  • 451 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

A combined ion-mobility mass spectrometry (IM-MS) and DFT study has been carried out to investigate Pd/MPAA(mono-N-protected amino acid)-catalyzed direct asymmetric C–H activation reactions of several prochiral substrates. The IM-MS experiments reveal that the activation of C–H bond can be achieved in PdII(MPAA)(substrate) complex which supports that the N-protecting group acts as proton acceptor. DFT studies lead to the establishment of a chirality relay model which successfully explains the enantioselectivity for all the relevant reactions studied. The enantioselectivity originates from the rigidity of the bidentate MPAA and rigid coordination of the substrate. The effect of bulkiness of the N-protecting group on enantioselectivity is also discussed.

Keywords

Collision Induce Dissociation Collision Cross Section Dissociation Channel Chiral Ligand Activation Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stahl SS, Labinger JA, Bercaw JE (1998) Angew Chem Int Ed 37:2180CrossRefGoogle Scholar
  2. 2.
    Godula K, Sames D (2006) Science 312:67CrossRefGoogle Scholar
  3. 3.
    Bergman RG (2007) Nature 446:391CrossRefGoogle Scholar
  4. 4.
    Chen X, Engle KM, Wang D-H, Yu J-Q (2009) Angew Chem Int Ed 48:5094CrossRefGoogle Scholar
  5. 5.
    Daugulis O, Do H-Q, Shabashov D (2009) Acc Chem Res 42:1074Google Scholar
  6. 6.
    Lyons TW, Sanford MS (2010) Chem Rev 110:1147CrossRefGoogle Scholar
  7. 7.
    Yeung CS, Dong VM (2011) Chem Rev 111:1215CrossRefGoogle Scholar
  8. 8.
    Davies HML, Du Bois J, Yu J-Q (2011) Chem Soc Rev 40:1855Google Scholar
  9. 9.
    Engle KM, Mei T-S, Wasa M, Yu J-Q (2011) Acc Chem Res 45:788CrossRefGoogle Scholar
  10. 10.
    Colby DA, Tsai AS, Bergman RG, Ellman JA (2011) Acc Chem Res 45:814CrossRefGoogle Scholar
  11. 11.
    Doyle MP, Goldberg KI (2012) Acc Chem Res 45:777CrossRefGoogle Scholar
  12. 12.
    Neufeldt SR, Sanford MS (2012) Acc Chem Res 45:936CrossRefGoogle Scholar
  13. 13.
    Wencel-Delord J, Droge T, Liu F, Glorius F (2011) Chem Soc Rev 40:4740CrossRefGoogle Scholar
  14. 14.
    Arockiam PB, Bruneau C, Dixneuf PH (2012) Chem Rev 112:5879CrossRefGoogle Scholar
  15. 15.
    Rouquet G, Chatani N (2013) Angew Chem Int Ed 52:11726CrossRefGoogle Scholar
  16. 16.
    He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu J-Q (2014) Science 343:1216CrossRefGoogle Scholar
  17. 17.
    Giri R, Shi B-F, Engle KM, Maugel N, Yu J-Q (2009) Chem Soc Rev 38:3242CrossRefGoogle Scholar
  18. 18.
    Zheng C, You S-L (2014) RSC Advances 4:6173CrossRefGoogle Scholar
  19. 19.
    Wencel-Delord J, Colobert F (2013) Chem Eur J 19:14010CrossRefGoogle Scholar
  20. 20.
    Yang L, Huang H (2012) Catal Sci Technol 2:1099Google Scholar
  21. 21.
    Engle KM, Thuy-Boun PS, Dang M, Yu J-Q (2011) J Am Chem Soc 133:18183CrossRefGoogle Scholar
  22. 22.
    Engle KM, Yu J-Q (2013) J Org Chem 78:8927CrossRefGoogle Scholar
  23. 23.
    ChanKelvin SL, Wasa M, Chu L, Laforteza BN, Miura M, Yu J-Q (2014) Nat Chem 6:146CrossRefGoogle Scholar
  24. 24.
    Shi B-F, Zhang Y-H, Lam JK, Wang D-H, Yu J-Q (2009) J Am Chem Soc 132:460CrossRefGoogle Scholar
  25. 25.
    Gao D-W, Shi Y-C, Gu Q, Zhao Z-L, You S-L (2012) J Am Chem Soc 135:86CrossRefGoogle Scholar
  26. 26.
    Cheng X-F, Li Y, Su Y-M, Yin F, Wang J-Y, Sheng J, Vora HU, Wang X-S, Yu J-Q (2013) J Am Chem Soc 135:1236CrossRefGoogle Scholar
  27. 27.
    Chu L, Wang X-C, Moore CE, Rheingold AL, Yu J-Q (2013) J Am Chem Soc 135:16344CrossRefGoogle Scholar
  28. 28.
    Pi C, Li Y, Cui X, Zhang H, Han Y, Wu Y (2013) Chem. Sci. 4:2675CrossRefGoogle Scholar
  29. 29.
    Peng HM, Dai L-X, You S-L (2010) Angew Chem Int Ed 49:5826CrossRefGoogle Scholar
  30. 30.
    Shi Y-C, Yang R-F, Gao D-W, You S-L (1891) Beilstein J Org Chem 2013:9Google Scholar
  31. 31.
    Xiao K-J, Chu L, Chen G, Yu J-Q (2016) J Am Chem SocGoogle Scholar
  32. 32.
    Xiao K-J, Chu L, Yu J-Q (2016) Angew Chem Int Ed 55:2856CrossRefGoogle Scholar
  33. 33.
    Du Z-J, Guan J, Wu G-J, Xu P, Gao L-X, Han F-S (2015) J Am Chem Soc 137:632CrossRefGoogle Scholar
  34. 34.
    Evans DA, Michael FE, Tedrow JS, Campos KR (2003) J Am Chem Soc 125:3534CrossRefGoogle Scholar
  35. 35.
    Shi B-F, Maugel N, Zhang Y-H, Yu J-Q (2008) Angew Chem Int Ed 47:4882CrossRefGoogle Scholar
  36. 36.
    Wasa M, Engle KM, Lin DW, Yoo EJ, Yu J-Q (2011) J Am Chem Soc 133:19598CrossRefGoogle Scholar
  37. 37.
    Chu L, Xiao K-J, Yu J-Q (2014) Science 346:451CrossRefGoogle Scholar
  38. 38.
    Chan KSL, Fu H-Y, Yu J-Q (2015) J Am Chem Soc 137:2042CrossRefGoogle Scholar
  39. 39.
    Lapointe D, Fagnou K (2010) Chem Lett 39:1118CrossRefGoogle Scholar
  40. 40.
    Biswas B, Sugimoto M, Sakaki S (2000) Organometallics 19:3895CrossRefGoogle Scholar
  41. 41.
    Powers DC, Geibel MAL, Klein JEMN, Ritter T (2009) J Am Chem Soc 131:17050CrossRefGoogle Scholar
  42. 42.
    Powers DC, Ritter T (2009) Nat Chem 1:302CrossRefGoogle Scholar
  43. 43.
    Davies DL, Donald SMA, Macgregor SA (2005) J Am Chem Soc 127:13754CrossRefGoogle Scholar
  44. 44.
    Tunge JA, Foresee LN (2005) Organometallics 24:6440CrossRefGoogle Scholar
  45. 45.
    Ryabov AD, Sakodinskaya IK, Yatsimirsky AK (1991) J Organomet Chem 406:309CrossRefGoogle Scholar
  46. 46.
    Labinger JA, Bercaw JE (2002) Nature 417:507CrossRefGoogle Scholar
  47. 47.
    García-Cuadrado D, Braga AAC, Maseras F, Echavarren AM (1066) J Am Chem Soc 2006:128Google Scholar
  48. 48.
    Lafrance M, Fagnou K (2006) J Am Chem Soc 128:16496CrossRefGoogle Scholar
  49. 49.
    Baxter RD, Sale D, Engle KM, Yu J-Q, Blackmond DG (2012) J Am Chem Soc 134:4600CrossRefGoogle Scholar
  50. 50.
    Musaev DG, Kaledin A, Shi B-F, Yu J-Q (2011) J Am Chem Soc 134:1690CrossRefGoogle Scholar
  51. 51.
    After we published the first paper (Ref. 52) about the model in which MPAA acts as base for C–H activation (model D) and during the manuscript preparation of the present work, the Musaeve group applied the same model (model D) to reaction 1 in their review (Chem. Soc. Rev. 2014, 43, 5009)Google Scholar
  52. 52.
    Cheng G-J, Yang Y-F, Liu P, Chen P, Sun T-Y, Li G, Zhang X, Houk KN, Yu J-Q, Wu Y-D (2014) J Am Chem Soc 136:894CrossRefGoogle Scholar
  53. 53.
    The present work studied reactions 1–8. Reaction 1.18 and 1.19 in Chapter 1 were not published when this work finished. But the chirality relay model can also be applied to Pd/MPAA catalyzed kinetic resolution reactions 1.18 and 1.19Google Scholar
  54. 54.
    Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) Int J Mass Spectrom 261:1CrossRefGoogle Scholar
  55. 55.
    Knapman TW, Valette NM, Warriner SL, Ashcroft AE (2013) Curr Anal Chem 9:181Google Scholar
  56. 56.
    Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT (2010) Anal Chem 82:9557CrossRefGoogle Scholar
  57. 57.
    Ruotolo BT, Benesch JLP, Sandercock AM, Hyung S-J, Robinson CV (2008) Nat Protoc 3:1139CrossRefGoogle Scholar
  58. 58.
  59. 59.
    Wyttenbach T, von Helden G, Batka JJ Jr, Carlat D, Bowers MT (1997) J Am Soc Mass Spectrom 8:275Google Scholar
  60. 60.
    Shvartsburg AA, Jarrold MF (1996) Chem Phys Lett 261:86CrossRefGoogle Scholar
  61. 61.
    Shvartsburg AA, Schatz GC, Jarrold MF (1998) J Chem Phys 108:2416CrossRefGoogle Scholar
  62. 62.
    Gaussian 09, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian, Inc., WallingfordGoogle Scholar
  63. 63.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  64. 64.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  65. 65.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  66. 66.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  67. 67.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  68. 68.
    Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029Google Scholar
  69. 69.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724CrossRefGoogle Scholar
  70. 70.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213CrossRefGoogle Scholar
  71. 71.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650CrossRefGoogle Scholar
  72. 72.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866CrossRefGoogle Scholar
  73. 73.
    Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123CrossRefGoogle Scholar
  74. 74.
    Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  75. 75.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378CrossRefGoogle Scholar
  76. 76.
    Legault CY (2009) CYLView, 1.0b. Université de Sherbrooke, Canada. http://www.cylview.org
  77. 77.
    We also used other amino acid ligands in MS study. We decided to present the MS results with N-Ac-Alanine because it is the simplest MPAA ligand without complex side chain and the acetyl group will not be fragmentated in CID experiment. Other MPAA ligands may lead to complicated spectra due to the fragmentation of side chain and/or the N-protecting group. The interested reader could refer to the supporting information of ref. 96 for the MS study with N-Boc-Valine ligandGoogle Scholar
  78. 78.
    Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (2008) J Mass Spectrom 43:1CrossRefGoogle Scholar
  79. 79.
    Harvey SR, MacPhee CE, Barran PE (2011) Methods 54:454CrossRefGoogle Scholar
  80. 80.
    Lanucara F, Holman SW, Gray CJ, Eyers CE (2014) Nat Chem 6:281CrossRefGoogle Scholar
  81. 81.
    Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE (2008) Annu Rev Anal Chem 1:293CrossRefGoogle Scholar
  82. 82.
    Jurneczko E, Barran PE (2011) Analyst 136:20CrossRefGoogle Scholar
  83. 83.
    McLean JA, Ruotolo BT, Gillig KJ, Russell DH (2005) Int J Mass Spectrom 240:301CrossRefGoogle Scholar
  84. 84.
    Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV (2014) Nature 510:172CrossRefGoogle Scholar
  85. 85.
    Ducháčková L, Roithová J, Milko P, Žabka J, Tsierkezos N, Schröder D (2010) Inorg Chem 50:771CrossRefGoogle Scholar
  86. 86.
    Révész Á, Schröder D, Rokob TA, Havlík M, Dolenský B (2011) Angew Chem Int Ed 50:2401CrossRefGoogle Scholar
  87. 87.
    Revesz A, Schroder D, Rokob TA, Havlik M, Dolensky B (2012) Phys Chem Chem Phys 14:6987CrossRefGoogle Scholar
  88. 88.
    Schröder D, Buděšínský M, Roithová J (2012) J Am Chem Soc 134:15897Google Scholar
  89. 89.
    Shaffer CJ, Schröder D, Gütz C, Lützen A (2012) Angew Chem Int Ed 51:8097CrossRefGoogle Scholar
  90. 90.
    Tsybizova A, Rulíšek L, Schröder D, Rokob TA (2012) J Phys Chem A 117:1171CrossRefGoogle Scholar
  91. 91.
    Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF (1996) J Phys Chem 100:16082CrossRefGoogle Scholar
  92. 92.
    Theoretical CCSs were calculated employing the open source program, MOBCAL, with trajectory methodGoogle Scholar
  93. 93.
    KOAc was applied in synthesis experimentGoogle Scholar
  94. 94.
    Evans DA, Campos KR, Tedrow JS, Michael FE, Gagné MR (2000) J Am Chem Soc 122:7905CrossRefGoogle Scholar
  95. 95.
    Ess DH, Houk KN (2008) J Am Chem Soc 130:10187CrossRefGoogle Scholar
  96. 96.
    Cheng G-J, Chen P, Sun T-Y, Zhang X, Yu J-Q, Wu Y-D (2015) Chem Eur J 21:11180CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Laboratory of Computational Chemistry and Drug Design and Laboratory of Chemical GenomicsPeking University Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations