Advertisement

Mechanistic Studies on Pd(MPAA)-Catalyzed Meta- and Ortho-C–H Activation Reactions

  • Gui-Juan ChengEmail author
Chapter
  • 565 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter presents a mechanistic study on Pd/MPAA(mono-N-protected amino acid)-catalyzed meta- and ortho-C–H activation reactions by a combined mass spectrometry and density functional theory (MS/DFT) method. A novel model for C–H activation was established which reveals the role of MPAA in promoting reactivity by favorably forming bidentate coordination with Pd and serving as the proton acceptor in C–H activation. It opens a new avenue for ligand and template design.

Keywords

Activation Barrier Proton Acceptor Bond Activation Activation Free Energy Palladium Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Leow D, Li G, Mei T-S, Yu J-Q (2012) Nature 486:518CrossRefGoogle Scholar
  2. 2.
    Li G, Leow D, Wan L, Yu J-Q (2013) Angew Chem Int Ed 52:1245CrossRefGoogle Scholar
  3. 3.
    Thuy-Boun PS, Villa G, Dang D, Richardson P, Su S, Yu J-Q (2013) J Am Chem Soc 135:17508CrossRefGoogle Scholar
  4. 4.
    Wang D-H, Engle KM, Shi B-F, Yu J-Q (2010) Science 327:315CrossRefGoogle Scholar
  5. 5.
    Engle KM, Thuy-Boun PS, Dang M, Yu J-Q (2011) J Am Chem Soc 133:18183CrossRefGoogle Scholar
  6. 6.
    Lu Y, Wang D-H, Engle KM, Yu J-Q (2010) J Am Chem Soc 132:5916CrossRefGoogle Scholar
  7. 7.
    Wan L, Dastbaravardeh N, Li G, Yu J-Q (2013) J Am Chem Soc 135:18056CrossRefGoogle Scholar
  8. 8.
    Xiao K-J, Lin DW, Miura M, Zhu R-Y, Gong W, Wasa M, Yu J-Q (2014) J Am Chem Soc 136:8138CrossRefGoogle Scholar
  9. 9.
    Novák P, Correa A, Gallardo-Donaire J, Martin R (2011) Angew Chem Int Ed 50:12236CrossRefGoogle Scholar
  10. 10.
    Huang C, Chattopadhyay B, Gevorgyan V (2011) J Am Chem Soc 133:12406CrossRefGoogle Scholar
  11. 11.
    Wang H-L, Hu R-B, Zhang H, Zhou A-X, Yang S-D (2013) Org Lett 15:5302CrossRefGoogle Scholar
  12. 12.
    Meng X, Kim S (2013) J Org Chem 78:11247CrossRefGoogle Scholar
  13. 13.
    Xiao K-J, Chu L, Chen G, Yu J-Q (2016) J Am Chem Soc 138:7796Google Scholar
  14. 14.
    Du Z-J, Guan J, Wu G-J, Xu P, Gao L-X, Han F-S (2015) J Am Chem Soc 137:632CrossRefGoogle Scholar
  15. 15.
    Xiao K-J, Chu L, Yu J-Q (2016) Angew Chem Int Ed 55:2856CrossRefGoogle Scholar
  16. 16.
    Peng HM, Dai L-X, You S-L (2010) Angew Chem Int Ed 49:5826CrossRefGoogle Scholar
  17. 17.
    Shi Y-C, Yang R-F, Gao D-W, You S-L (2013) Beilstein J Org Chem 9:1891Google Scholar
  18. 18.
    Evans DA, Michael FE, Tedrow JS, Campos KR (2003) J Am Chem Soc 125:3534CrossRefGoogle Scholar
  19. 19.
    Gao D-W, Shi Y-C, Gu Q, Zhao Z-L, You S-L (2012) J Am Chem Soc 135:86CrossRefGoogle Scholar
  20. 20.
    Marson A, van Oort AB, Mul Wilhelmus P (2002) Eur J Inorg Chem 2002:3028Google Scholar
  21. 21.
    Musaev DG, Kaledin A, Shi B-F, Yu J-Q (2011) J Am Chem Soc 134:1690CrossRefGoogle Scholar
  22. 22.
    Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) Int J Mass Spectrom 261:1CrossRefGoogle Scholar
  23. 23.
    Gaussian 09, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian, Inc., WallingfordGoogle Scholar
  24. 24.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  25. 25.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  26. 26.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  27. 27.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  28. 28.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  29. 29.
    Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029Google Scholar
  30. 30.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724CrossRefGoogle Scholar
  31. 31.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213CrossRefGoogle Scholar
  32. 32.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650CrossRefGoogle Scholar
  33. 33.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866CrossRefGoogle Scholar
  34. 34.
    Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123CrossRefGoogle Scholar
  35. 35.
    Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  36. 36.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378CrossRefGoogle Scholar
  37. 37.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin, TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605Google Scholar
  38. 38.
    Legault CY (2009) CYLView 1.0b. Université de Sherbrooke, Canada. http://www.cylview.org
  39. 39.
    See Figure S1–S4 of the supporting information in ref. 58Google Scholar
  40. 40.
    Navarro R, García J, Urriolabeitia EP, Cativiela C, Diaz-de-Villegas MD (1995) J Organomet Chem 490:35CrossRefGoogle Scholar
  41. 41.
    Vasseur A, Harakat D, Muzart J, Le Bras J (2012) J Org Chem 77:5751CrossRefGoogle Scholar
  42. 42.
    The calculated dissociation free energy in the present chapter is different from that in chapter 2 because they were calculated at different temperaturesGoogle Scholar
  43. 43.
    Ackermann L (2011) Chem Rev 111:1315CrossRefGoogle Scholar
  44. 44.
    Lapointe D, Fagnou K (2010) Chem Lett 39:1118CrossRefGoogle Scholar
  45. 45.
    Biswas B, Sugimoto M, Sakaki S (2000) Organometallics 19:3895CrossRefGoogle Scholar
  46. 46.
    Gómez M, Granell J, Martinez M (1997) Organometallics 16:2539CrossRefGoogle Scholar
  47. 47.
    Gomez M, Granell J, Martinez MJ (1998) Chem Soc Dalon Trans 37Google Scholar
  48. 48.
    Davies DL, Donald SMA, Macgregor SA (2005) J Am Chem Soc 127:13754CrossRefGoogle Scholar
  49. 49.
    Tunge JA, Foresee LN (2005) Organometallics 24:6440CrossRefGoogle Scholar
  50. 50.
    Zhang S, Shi L, Ding Y (2011) J Am Chem Soc 133:20218CrossRefGoogle Scholar
  51. 51.
    Giri R, Lan Y, Liu P, Houk KN, Yu J-Q (2012) J Am Chem Soc 134:14118CrossRefGoogle Scholar
  52. 52.
    (a) Steinhoff BA, Guzei IA, Stahl SS (2004) J Am Chem Soc 126:11268 (b) Emmert MH, Cook AK, Xie YJ, Sanford MS (2011) Angew Chem Int Ed 50:9409 (c) Kubota A, Emmert MH, Sanford MS (2012) Org Lett 14:1760Google Scholar
  53. 53.
    Zhang Y-H, Shi B-F, Yu J-Q (2009) J Am Chem Soc 131:5072CrossRefGoogle Scholar
  54. 54.
    Chaumontet M, Piccardi R, Audic N, Hitce J, Peglion J-L, Clot E, Baudoin O (2008) J Am Chem Soc 130:15157CrossRefGoogle Scholar
  55. 55.
    Rousseaux S, Gorelsky SI, Chung BKW, Fagnou K (2010) J Am Chem Soc 132:10692CrossRefGoogle Scholar
  56. 56.
    Tang R-Y, Li G, Yu J-Q (2014) Nature 507:215CrossRefGoogle Scholar
  57. 57.
    Bag S, Patra T, Modak A, Deb A, Maity S, Dutta U, Dey A, Kancherla R, Maji A, Hazra A, Bera M, Maiti D (2015) J Am Chem Soc 137:11888CrossRefGoogle Scholar
  58. 58.
    Cheng G-J, Yang Y-F, Liu P, Chen P, Sun T-Y, Li G, Zhang X, Houk KN, Yu J-Q, Wu Y-D (2014) J Am Chem Soc 136:894CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Laboratory of Computational Chemistry and Drug Design and Laboratory of Chemical GenomicsPeking University Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations