Skip to main content

Rare Cells: Focus on Detection and Clinical Relevance

  • Chapter
  • First Online:

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

The study of rare-cell populations is assuming a growing importance to the advancement of medical diagnostics and therapeutics. In several clinical studies, counting rare cells can provide valuable information on the status of the patient; examples are the search for circulating tumor cells in peripheral blood, tumor stem cells, endothelial cells, hematopoietic progenitor cells and their subpopulations, antigen-specific T-cells, invariant natural killer T cells, and fetal cells in maternal circulation. The study of rare-cell populations is useful not only to understand disease mechanisms, but also to find novel targets. With multiparameter capabilities and a very high analysis rate, flow cytometry is at present the most potent technology to address rare-cell analysis. This chapter will describe the main issues of the pre-analytical phase, including the amount of blood to use, the use of pre-enriched populations, the number of markers to use, and the number of cells to acquire. Moreover, we will discuss the importance of excluding doublets and the use of a DUMP channel, along with the importance of using optimal methodologies in all phases, including collection of biological samples, adequate controls, and expert use of software and hardware.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Donnenberg AD and Donnenberg VS (2007) Rare-event analysis in flow cytometry. Clin Lab Med 27:627–52, viii. doi:10.1016/j.cll.2007.05.013

  2. Gross HJ, Verwer B, Houck D, Hoffman RA, Recktenwald D (1995) Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10(−7). Proc Natl Acad Sci USA 92:537–41

    Google Scholar 

  3. Leslie DS, Johnston WW, Daly L, Ring DB, Shpall EJ, Peters WP, Bast RC Jr (1990) Detection of breast carcinoma cells in human bone marrow using fluorescence-activated cell sorting and conventional cytology. Am J Clin Pathol 94:8–13

    Google Scholar 

  4. Frantz CN, Ryan DH, Cheung NV, Duerst RE, Wilbur DC (1988) Sensitive detection of rare metastatic human neuroblastoma cells in bone marrow by two-color immunofluorescence and cell sorting. Prog Clin Biol Res 271:249–62

    Google Scholar 

  5. Ryan DH, Mitchell SJ, Hennessy LA, Bauer KD, Horan PK, Cohen HJ (1984) Improved detection of rare CALLA-positive cells in peripheral blood using multiparameter flow cytometry. J Immunol Methods 74:115–28

    Google Scholar 

  6. Visser JW, De Vries P (1990) Identification and purification of murine hematopoietic stem cells by flow cytometry. Methods Cell Biol 33:451–68

    Google Scholar 

  7. Cory JM, Ohlsson-Wilhelm BM, Brock EJ, Sheaffer NA, Steck ME, Eyster ME, Rapp F (1987) Detection of human immunodeficiency virus-infected lymphoid cells at low frequency by flow cytometry. J Immunol Methods 105:71–8

    Google Scholar 

  8. Nemes E, Lugli E, Bertoncelli L, Nasi M, Pinti M, Manzini S, Prati F, Manzini L, Del Giovane C, D’Amico R, Cossarizza A, Mussini C (2011) CD4+ T-cell differentiation, regulatory T cells and gag-specific T lymphocytes are unaffected by CD4-guided treatment interruption and therapy resumption. AIDS 25:1443–1453. doi:10.1097/QAD.0b013e328347b5e2

    Article  Google Scholar 

  9. De Biasi S, Simone AM, Nasi M, Bianchini E, Ferraro D, Vitetta F, Gibellini L, Pinti M, Del Giovane C, Sola P, Cossarizza A (2016) iNKT cells in secondary progressive multiple sclerosis patients display pro-inflammatory profiles. Frontiers in Immunol 7. doi:10.3389/mmu.2016.00555

  10. De Biasi S, Bianchini E, Nasi M, Digaetano M, Gibellini L, Carnevale G, Borghi V, Guaraldi G, Pinti M, Mussini C, Cossarizza A (2016) Th1 and Th17 proinflammatory profile characterizes invariant natural killer T cells in virologically suppressed HIV+ patients with low CD4+/CD8+ ratio. AIDS 30:2599–2610. doi:10.1097/QAD.0000000000001247

    Article  Google Scholar 

  11. Jensen RH, Leary JF (1990) Flow cytometry and sorting, 2nd ed. New York

    Google Scholar 

  12. Bacher P, Scheffold A (2013) Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A 83:692–701. doi:10.1002/cyto.a.22317

    Article  Google Scholar 

  13. Gratama JW, Kern F, Manca F, Roederer M (2008) Measuring antigen-specific immune responses, 2008 update. Cytometry A 73:971–974. doi:10.1002/cyto.a.20655

    Article  Google Scholar 

  14. Newell EW, Klein LO, Yu W, Davis MM (2009) Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat Methods 6:497–499. doi:10.1038/nmeth.1344

    Article  Google Scholar 

  15. Lamoreaux L, Roederer M, Koup R (2006) Intracellular cytokine optimization and standard operating procedure. Nat Protoc 1:1507–1516. doi:10.1038/nprot.2006.268

    Article  Google Scholar 

  16. Bentzen AK, Marquard AM, Lyngaa R, Saini SK, Ramskov S, Donia M, Such L, Furness AJS, McGranahan N, Rosenthal R, Straten PT, Szallasi Z, Svane IM, Swanton C, Quezada SA, Jakobsen SN, Eklund AC, Hadrup SR (2016) Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol 34:1037–1045. doi:10.1038/nbt.3662

    Article  Google Scholar 

  17. Huang J, Zeng X, Sigal N, Lund PJ, Su LF, Huang H, Chien YH, Davis MM (2016) Detection, phenotyping, and quantification of antigen-specific T cells using a peptide-MHC dodecamer. Proc Natl Acad Sci USA 113:E1890–E1897. doi:10.1073/pnas.1602488113

    Article  Google Scholar 

  18. Casazza JP, Bowman KA, Adzaku S, Smith EC, Enama ME, Bailer RT, Price DA, Gostick E, Gordon IJ, Ambrozak DR, Nason MC, Roederer M, Andrews CA, Maldarelli FM, Wiegand A, Kearney MF, Persaud D, Ziemniak C, Gottardo R, Ledgerwood JE, Graham BS, Koup RA, Team VRCS (2013) Therapeutic vaccination expands and improves the function of the HIV-specific memory T-cell repertoire. J Infect Dis 207:1829–1840. doi:10.1093/infdis/jit098

    Article  Google Scholar 

  19. Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK (2003) Duration of antiviral immunity after smallpox vaccination. Nat Med 9:1131–1137. doi:10.1038/nm917

    Article  Google Scholar 

  20. Hammarlund E, Lewis MW, Hanifin JM, Mori M, Koudelka CW, Slifka MK (2010) Antiviral immunity following smallpox virus infection: a case-control study. J Virol 84:12754–12760. doi:10.1128/JVI.01763-10

    Article  Google Scholar 

  21. Nemes E, Bertoncelli L, Lugli E, Pinti M, Nasi M, Manzini L, Manzini S, Prati F, Borghi V, Cossarizza A, Mussini C (2010) Cytotoxic granule release dominates gag-specific CD4+ T-cell response in different phases of HIV infection. AIDS 24:947–957. doi:10.1097/QAD.0b013e328337b144

    Article  Google Scholar 

  22. Klenerman P, Oxenius A (2016) T cell responses to cytomegalovirus. Nat Rev Immunol 16:367–377. doi:10.1038/nri.2016.38

    Article  Google Scholar 

  23. Urdahl KB, Shafiani S, Ernst JD (2011) Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol 4:288–293. doi:10.1038/mi.2011.10

    Article  Google Scholar 

  24. Brennan PJ, Brigl M, Brenner MB (2013) Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 13:101–117. doi:10.1038/nri3369nri3369 [pii]

    Article  Google Scholar 

  25. Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11:197–206. doi:10.1038/ni.1841ni.1841 [pii]

    Article  Google Scholar 

  26. Berzins SP, Smyth MJ, Baxter AG (2011) Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol 11:131–142. doi:10.1038/nri2904nri2904 [pii]

    Article  Google Scholar 

  27. Seino K, Taniguchi M (2005) Functionally distinct NKT cell subsets and subtypes. J Exp Med 202:1623–1626. doi:10.1084/jem.20051600 [pii]

    Article  Google Scholar 

  28. Osada T, Morse MA, Lyerly HK, Clay TM (2005) Ex vivo expanded human CD4+ regulatory NKT cells suppress expansion of tumour antigen-specific CTLs. Int Immunol 17:1143–1155. doi:10.1093/intimm/dxh292

    Article  Google Scholar 

  29. Goto M, Murakawa M, Kadoshima-Yamaoka K, Tanaka Y, Nagahira K, Fukuda Y, Nishimura T (2009) Murine NKT cells produce Th17 cytokine interleukin-22. Cell Immunol 254:81–84. doi:10.1016/j.cellimm.2008.10.002

    Article  Google Scholar 

  30. O’Reilly V, Zeng SG, Bricard G, Atzberger A, Hogan AE, Jackson J, Feighery C, Porcelli SA, Doherty DG (2011) Distinct and overlapping effector functions of expanded human CD4+, CD8α+ and CD4−CD8α− invariant natural killer T cells. PLoS ONE 6:e28648. doi:10.1371/journal.pone.0028648

    Article  Google Scholar 

  31. Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G (2014) IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 124:3725–3740. doi:10.1172/JCI72308

    Article  Google Scholar 

  32. Monteiro M, Almeida CF, Caridade M, Ribot JC, Duarte J, Agua-Doce A, Wollenberg I, Silva-Santos B, Graca L (2010) Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-beta. J Immunol 185:2157–2163. doi:10.4049/jimmunol.1000359

    Article  Google Scholar 

  33. Yamamura T, Sakuishi K, Illes Z, Miyake S (2007) Understanding the behavior of invariant NKT cells in autoimmune diseases. J Neuroimmunol 191:8–15. doi:10.1016/j.jneuroim.2007.09.014

    Article  Google Scholar 

  34. Novak J, Griseri T, Beaudoin L, Lehuen A (2007) Regulation of type 1 diabetes by NKT cells. Int Rev Immunol 26:49–72. doi:10.1080/08830180601070229

    Article  Google Scholar 

  35. Gabriel L, Morley BJ, Rogers NJ (2009) The role of iNKT cells in the immunopathology of systemic lupus erythematosus. Ann N Y Acad Sci 1173:435–441. doi:10.1111/j.1749-6632.2009.04743.x

    Article  Google Scholar 

  36. Parietti V, Chifflot H, Sibilia J, Muller S, Monneaux F (2010) Rituximab treatment overcomes reduction of regulatory iNKT cells in patients with rheumatoid arthritis. Clin Immunol 134:331–339. doi:10.1016/j.clim.2009.11.007

    Article  Google Scholar 

  37. Motsinger A, Haas DW, Stanic AK, Van Kaer L, Joyce S, Unutmaz D (2002) CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med 195:869–79

    Google Scholar 

  38. Ibarrondo FJ, Wilson SB, Hultin LE, Shih R, Hausner MA, Hultin PM, Anton PA, Jamieson BD, Yang OO (2013) Preferential depletion of gut CD4-expressing iNKT cells contributes to systemic immune activation in HIV-1 infection. Mucosal Immunol 6:591–600. doi:10.1038/mi.2012.101

    Article  Google Scholar 

  39. Paquin-Proulx D, Ching C, Vujkovic-Cvijin I, Fadrosh D, Loh L, Huang Y, Somsouk M, Lynch SV, Hunt PW, Nixon DF, SenGupta D (2016) Bacteroides are associated with GALT iNKT cell function and reduction of microbial translocation in HIV-1 infection. Mucosal Immunol. doi:10.1038/mi.2016.34

    Google Scholar 

  40. Moll M, Kuylenstierna C, Gonzalez VD, Andersson SK, Bosnjak L, Sonnerborg A, Quigley MF, Sandberg JK (2009) Severe functional impairment and elevated PD-1 expression in CD1d-restricted NKT cells retained during chronic HIV-1 infection. Eur J Immunol 39:902–911. doi:10.1002/eji.200838780

    Article  Google Scholar 

  41. Snyder-Cappione JE, Loo CP, Carvalho KI, Kuylenstierna C, Deeks SG, Hecht FM, Rosenberg MG, Sandberg JK, Kallas EG, Nixon DF (2009) Lower cytokine secretion ex vivo by natural killer T cells in HIV-infected individuals is associated with higher CD161 expression. AIDS 23:1965–1970. doi:10.1097/QAD.0b013e32832b5134

    Article  Google Scholar 

  42. van der Vliet HJ, van Vonderen MG, Molling JW, Bontkes HJ, Reijm M, Reiss P, van Agtmael MA, Danner SA, van den Eertwegh AJ, von Blomberg BM, Scheper RJ (2006) Cutting edge: rapid recovery of NKT cells upon institution of highly active antiretroviral therapy for HIV-1 infection. J Immunol 177:5775–8

    Google Scholar 

  43. Yang OO, Wilson SB, Hultin LE, Detels R, Hultin PM, Ibarrondo FJ, Jamieson BD (2007) Delayed reconstitution of CD4+ iNKT cells after effective HIV type 1 therapy. AIDS Res Hum Retroviruses 23:913–922. doi:10.1089/aid.2006.0253

    Article  Google Scholar 

  44. Wilson SB, Delovitch TL (2003) Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 3:211–222. doi:10.1038/nri1028

    Article  Google Scholar 

  45. McEwen-Smith RM, Salio M, Cerundolo V (2015) The regulatory role of invariant NKT cells in tumour immunity. Cancer Immunol Res 3:425–435. doi:10.1158/2326-6066.CIR-15-0062

    Article  Google Scholar 

  46. Pool EH, Dunlop GR (1934) Cancer cells in the blood stream. Am J Cancer 21:99–103

    Google Scholar 

  47. Sbarbati R, de Boer M, Marzilli M, Scarlattini M, Rossi G, van Mourik JA (1991) Immunologic detection of endothelial cells in human whole blood. Blood 77:764–9

    Google Scholar 

  48. Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP (1997) Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 337:1584–1590. doi:10.1056/NEJM199711273372203

    Article  Google Scholar 

  49. Sowemimo-Coker SO, Meiselman HJ, Francis RB Jr (1989) Increased circulating endothelial cells in sickle cell crisis. Am J Hematol 31:263–5

    Google Scholar 

  50. Lefevre P, George F, Durand JM, Sampol J (1993) Detection of circulating endothelial cells in thrombotic thrombocytopenic purpura. Thromb Haemost 69:522

    Google Scholar 

  51. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600. doi:10.1056/NEJMoa022287

    Article  Google Scholar 

  52. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007. doi:10.1056/NEJMoa043814

    Article  Google Scholar 

  53. Bakogiannis C, Tousoulis D, Androulakis E, Briasoulis A, Papageorgiou N, Vogiatzi G, Kampoli AM, Charakida M, Siasos G, Latsios G, Antoniades C, Stefanadis C (2012) Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes. Curr Med Chem 19:2597–604

    Google Scholar 

  54. De Biasi S, Cerri S, Bianchini E, Gibellini L, Persiani E, Montanari G, Luppi F, Carbonelli CM, Zucchi L, Bocchino M, Zamparelli AS, Vancheri C, Sgalla G, Richeldi L, Cossarizza A (2015) Levels of circulating endothelial cells are low in idiopathic pulmonary fibrosis and are further reduced by anti-fibrotic treatments. BMC Med 13:277. doi:10.1186/s12916-015-0515-0

    Article  Google Scholar 

  55. Boraldi F, Bartolomeo A, De Biasi S, Orlando S, Costa S, Cossarizza A, Quaglino D (2016) Innovative flow cytometry allows accurate identification of rare circulating cells involved in endothelial dysfunction. PLoS One 11:e0160153. doi:10.1371/journal.pone.0160153

    Article  Google Scholar 

  56. Furstenberger G, von Moos R, Senn HJ, Boneberg EM (2005) Real-time PCR of CD146 mRNA in peripheral blood enables the relative quantification of circulating endothelial cells and is an indicator of angiogenesis. Br J Cancer 93:793–798. doi:10.1038/sj.bjc.6602782

    Article  Google Scholar 

  57. Goon PK, Lip GY, Boos CJ, Stonelake PS, Blann AD (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8:79–88. doi:10.1593/neo.05592

    Article  Google Scholar 

  58. Narazaki M, Tosato G (2006) Tumour cell populations differ in angiogenic activity: a model system for spontaneous angiogenic switch can tell us why. J Natl Cancer Inst 98:294–295. doi:10.1093/jnci/djj099

    Article  Google Scholar 

  59. Weis SM, Cheresh DA (2011) Tumour angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370. doi:10.1038/nm.2537

    Article  Google Scholar 

  60. Mancuso P, Burlini A, Pruneri G, Goldhirsch A, Martinelli G, Bertolini F (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97:3658–61

    Google Scholar 

  61. Beerepoot LV, Mehra N, Vermaat JS, Zonnenberg BA, Gebbink MF, and Voest EE (2004) Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann Oncol 15:139–45

    Google Scholar 

  62. Mancuso P, Colleoni M, Calleri A, Orlando L, Maisonneuve P, Pruneri G, Agliano A, Goldhirsch A, Shaked Y, Kerbel RS, Bertolini F (2006) Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 108:452–459. doi:10.1182/blood-2005-11-4570

    Article  Google Scholar 

  63. Malka D, Boige V, Jacques N, Vimond N, Adenis A, Boucher E, Pierga JY, Conroy T, Chauffert B, Francois E, Guichard P, Galais MP, Cvitkovic F, Ducreux M, Farace F (2012) Clinical value of circulating endothelial cell levels in metastatic colorectal cancer patients treated with first-line chemotherapy and bevacizumab. Ann Oncol 23:919–927. doi:10.1093/annonc/mdr365

    Article  Google Scholar 

  64. Strijbos MH, Rao C, Schmitz PI, Kraan J, Lamers CH, Sleijfer S, Terstappen LW, Gratama JW (2008) Correlation between circulating endothelial cell counts and plasma thrombomodulin levels as markers for endothelial damage. Thromb Haemost 100:642–7

    Google Scholar 

  65. DuBois SG, Stempak D, Wu B, Mokhtari RB, Nayar R, Janeway KA, Goldsby R, Grier HE, Baruchel S (2012) Circulating endothelial cells and circulating endothelial precursor cells in patients with osteosarcoma. Pediatr Blood Cancer 58:181–184. doi:10.1002/pbc.23046

    Article  Google Scholar 

  66. Reale A, Melaccio A, Lamanuzzi A, Saltarella I, Dammacco F, Vacca A, Ria R (2016) Functional and biological role of endothelial precursor cells in tumour progression: a new potential therapeutic target in haematological malignancies. Stem Cells Int 2016:7954580. doi:10.1155/2016/7954580

    Article  Google Scholar 

  67. Duda DG, Cohen KS, Scadden DT, Jain RK (2007) A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2:805–810. doi:10.1038/nprot.2007.111

    Article  Google Scholar 

  68. Van Craenenbroeck EM, Conraads VM, Van Bockstaele DR, Haine SE, Vermeulen K, Van Tendeloo VF, Vrints CJ, Hoymans VY (2008) Quantification of circulating endothelial progenitor cells: a methodological comparison of six flow cytometric approaches. J Immunol Methods 332:31–40. doi:10.1016/j.jim.2007.12.006

    Article  Google Scholar 

  69. Estes ML, Mund JA, Ingram DA, Case J (2010) Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr Protoc Cytom, Chapter 9:Unit 9–33,1–11. doi:10.1002/0471142956.cy0933s52

  70. Danova M, Comolli G, Manzoni M, Torchio M, Mazzini G (2016) Flow cytometric analysis of circulating endothelial cells and endothelial progenitors for clinical purposes in oncology: a critical evaluation. Mol Clin Oncol 4:909–917. doi:10.3892/mco.2016.823

    Google Scholar 

  71. Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14:623–631. doi:10.1038/nrc3820

    Article  Google Scholar 

  72. Pantel K, Speicher MR (2016) The biology of circulating tumour cells. Oncogene 35:1216–1224. doi:10.1038/onc.2015.192

    Article  Google Scholar 

  73. Mu Z, Benali-Furet N, Uzan G, Znaty A, Ye Z, Paolillo C, Wang C, Austin L, Rossi G, Fortina P, Yang H, Cristofanilli M (2016) Detection and characterization of circulating tumour associated cells in metastatic breast cancer. Int J Mol Sci 17. doi:10.3390/ijms17101665

  74. Barriere G, Fici P, Gallerani G, Fabbri F, Zoli W, Rigaud M (2014) Circulating tumour cells and epithelial, mesenchymal and stemness markers: characterization of cell subpopulations. Ann Transl Med 2:109. doi:10.3978/j.issn.2305-5839.2014.10.04

    Google Scholar 

  75. Mantovani A, Locati M (2016) Macrophage metabolism shapes angiogenesis in tumours. Cell Metab 24:887–888. doi:10.1016/j.cmet.2016.11.007

    Article  Google Scholar 

  76. Alix-Panabieres C, Pantel K (2013) Real-time liquid biopsy: circulating tumour cells versus circulating tumour DNA. Ann Transl Med 1:18. doi:10.3978/j.issn.2305-5839.2013.06.02

    Google Scholar 

  77. Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11:231–238. doi:10.1002/cyto.990110203

    Article  Google Scholar 

  78. Radbruch A, Recktenwald D (1995) Detection and isolation of rare cells. Curr Opin Immunol 7:270–3

    Google Scholar 

  79. Campbell JD, Foerster A, Lasmanowicz V, Niemoller M, Scheffold A, Fahrendorff M, Rauser G, Assenmacher M, Richter A (2011) Rapid detection, enrichment and propagation of specific T cell subsets based on cytokine secretion. Clin Exp Immunol 163:1–10. doi:10.1111/j.1365-2249.2010.04261.x

    Article  Google Scholar 

  80. Chattopadhyay PK, Yu J, Roederer M (2005) A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat Med 11:1113–1117. doi:10.1038/nm1293

    Article  Google Scholar 

  81. Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ, Bleakley M, Greenberg PD (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110:201–210. doi:10.1182/blood-2006-11-056168

    Article  Google Scholar 

  82. Bacher P, Kniemeyer O, Schonbrunn A, Sawitzki B, Assenmacher M, Rietschel E, Steinbach A, Cornely OA, Brakhage AA, Thiel A, Scheffold A (2014) Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunol 7:916–928. doi:10.1038/mi.2013.107

    Google Scholar 

  83. Mancuso P, Antoniotti P, Quarna J, Calleri A, Rabascio C, Tacchetti C, Braidotti P, Wu HK, Zurita AJ, Saronni L, Cheng JB, Shalinsky DR, Heymach JV, Bertolini F (2009) Validation of a standardized method for enumerating circulating endothelial cells and progenitors: flow cytometry and molecular and ultrastructural analyses. Clin Cancer Res 15:267–273. doi:10.1158/1078-0432.CCR-08-0432

    Article  Google Scholar 

  84. Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45:194–205

    Google Scholar 

  85. Roederer M (2002) Compensation in flow cytometry. Curr Protoc Cytom, Chapter 1:Unit 1–14. doi:10.1002/0471142956.cy0114s22

  86. Perfetto SP, Ambrozak D, Nguyen R, Chattopadhyay P, Roederer M (2006) Quality assurance for polychromatic flow cytometry. Nat Protoc 1:1522–1530. doi:10.1038/nprot.2006.250

    Article  Google Scholar 

  87. Cox C, Reeder JE, Robinson RD, Suppes SB, Wheeless LL (1988) Comparison of frequency distributions in flow cytometry. Cytometry 9:291–298. doi:10.1002/cyto.990090404

    Article  Google Scholar 

  88. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77. doi:10.1172/JCI8071

    Article  Google Scholar 

  89. Haight FA (1967) Handbook of the Poisson distribution. Wiley, New York

    Google Scholar 

  90. Roederer M (2008) How many events is enough? are you positive? Cytometry A 73:384–385. doi:10.1002/cyto.a.20549

    Article  Google Scholar 

  91. Lugli E, Roederer M, Cossarizza A (2010) Data analysis in flow cytometry: the future just started. Cytometry A 77:705–713. doi:10.1002/cyto.a.20901

    Article  Google Scholar 

  92. Saeys Y, Van Gassen S, Lambrecht BN (2016) Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol 16:449–462. doi:10.1038/nri.2016.56

    Article  Google Scholar 

  93. Lugli E, Pinti M, Nasi M, Troiano L, Ferraresi R, Mussi C, Salvioli G, Patsekin V, Robinson JP, Durante C, Cocchi M, Cossarizza A (2007) Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry Part A 71a:334–344. doi:10.1002/cyto.a.20387

  94. Naim I, Datta S, Rebhahn J, Cavenaugh JS, Mosmann TR, Sharma G (2014) SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: algorithm design. Cytometry A 85:408–421. doi:10.1002/cyto.a.22446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara De Biasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

De Biasi, S., Gibellini, L., Nasi, M., Pinti, M., Cossarizza, A. (2017). Rare Cells: Focus on Detection and Clinical Relevance. In: Robinson, J., Cossarizza, A. (eds) Single Cell Analysis. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-4499-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4499-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4498-4

  • Online ISBN: 978-981-10-4499-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics