Skip to main content

Hot Deformation Behaviors of TiBw/Ti6Al4V Composites with Network Microstructure

  • Chapter
  • First Online:
Discontinuously Reinforced Titanium Matrix Composites
  • 645 Accesses

Abstract

It is encouraging that the novel network-structured TiBw/Ti6Al4V composites with a combination of superior strengthening and toughening effects were successfully designed and fabricated in our previous work. Compared with the monolithic Ti6Al4V alloy fabricated by the same process, the ultimate tensile strength of the as-sintered 5 vol.% TiBw/Ti6Al4V composites with a novel network microstructure was increased by 34% (1090 MPa) aligned with 3.6% elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang LJ, Geng L, Peng HX, Zhang J (2011) Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture. Scripta Mater 64(9):844–847

    Article  Google Scholar 

  2. Huang LJ, Geng L, Li AB, Yang FY, Peng HX (2009) In situ TiBw/Ti-6Al-4V composites with novel reinforcement architecture fabricated by reaction hot pressing. Scripta Mater 60(11):996–999

    Article  Google Scholar 

  3. Huang LJ, Geng L, Wang B, Xu HY, Kaveendran B (2012) Effects of extrusion and heat treatment on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composite with a network architecture. Compos Part A 43(3):486–491

    Article  Google Scholar 

  4. Huang LJ, ZhangYZ Geng L, Wang B, Ren W (2013) Hot compression characteristics of TiBw/Ti6Al4V composites with novel network microstructure using processing maps. Mater Sci Eng A 580:242–249

    Article  Google Scholar 

  5. Seshacharyulu T, Medeiros SC, Frazier WG, Prasad YVRK (2002) Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure. Mater Sci Eng A 325:112–125

    Article  Google Scholar 

  6. Park NK, Yeom JT, Na YS (2002) Characterization of deformation stability in hot forging of conventional Ti–6Al–4V using processing maps. J Mater Process Technol 130–131:540–545

    Article  Google Scholar 

  7. Ding R, Guo ZX, Wilson A (2002) Microstructural evolution of a Ti–6Al–4V alloy during thermomechanical processing. Mater Sci Eng A 327:233–245

    Article  Google Scholar 

  8. Prasad YVRK, Seshacharyulu T (1998) Processing maps for hot working of titanium alloys. Mater Sci Eng A 243:82–88

    Article  Google Scholar 

  9. Park NK, Yeom JT, Na YS (2002) Characterization of deformation stability in hot forging of conventional Ti–6Al–4V using processing maps. J Mater Process Technol 130–131:540–545

    Article  Google Scholar 

  10. Prasad YVRK, Seshacharyulu T (1998) Processing maps for hot working of titanium alloys. Mater Sci Eng A 243:82–88

    Article  Google Scholar 

  11. Seshacharyulu T, Medeiros SC, Frazier WG, Prasad YVRK (2002) Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure. Mater Sci Eng A 325:112–125

    Article  Google Scholar 

  12. Huang LJ, Geng L, Li AB, Cui XP, Li HZ, Wang GS (2009) Characteristics of hot compression behavior of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy with an equiaxed microstructure. Mater Sci Eng A 505:136–143

    Article  Google Scholar 

  13. Poletti C, Warchomicka F, Degischer HP (2010) Local deformation of Ti6Al4V modified 1 wt% B and 0.1 wt% C. Mater Sci Eng A 527:1109–1116

    Article  Google Scholar 

  14. Sen I, Kottada RS, Ramamurty U (2010) High temperature deformation processing maps for boron modified Ti–6Al–4V alloys. Mater Sci Eng A 527:6157–6165

    Article  Google Scholar 

  15. Gorsse S, Miracle DB (2003) Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater 51(9):2427–2442

    Article  Google Scholar 

  16. Xiao L, Lu WJ, Yang ZF, Qin JN, Zhang D et al (2008) Effect of reinforcements on high temperature mechanical properties of in situ synthesized titanium matrix composites. Mater Sci Eng A 491(1–2):192–198

    Article  Google Scholar 

  17. Srivatsan TS, Soboyejo WO, Lederich RJ (1997) Tensile deformation and fracture behaviors of a titanium-alloy metal-matrix composite. Compos Part A 28(4):365–376

    Article  Google Scholar 

  18. Huang LJ, Geng L, Li AB, Wang GS, Cui XP (2008) Effects of hot compression and heat treatment on the microstructure and tensile property of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy. Mater Sci Eng A 489(1–2):330–336

    Google Scholar 

  19. Welsch G, Boyer R, Collings EW (1994) Materials properties handbook: titanium alloys. ASM International, pp 488–490

    Google Scholar 

  20. Peng HX (1995) A review of “Consolidation effects on tensile properties of an elemental Al matrix composite”. Mater Sci Eng A 396(1–2):1–2

    Google Scholar 

  21. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140

    Article  Google Scholar 

  22. Clyne TW, Withers PJ (1995) An introduction to metal matrix composites. Cambridge University Press, pp 12–17

    Google Scholar 

  23. Cao GJ, Geng L, Naka M (2006) Elastic properties of titanium monoboride measured by nanoindentation. J Am Ceram Soc 89(12):3836–3838

    Article  Google Scholar 

  24. Huang LJ, Geng L, Peng HX (2015) Microstructurally inhomogeneous composites: is a homogeneous reinforcement distribution optimal? Prog Mater Sci 71:93–168

    Article  Google Scholar 

  25. Huang LJ, Tang A, Rong XD, Geng L (2013) Effects of hot rolling deformation on microstructure and mechanical properties of TiBw/Ti6Al4V composites with network microstructure. J Aeronaut Mater (Chinese) 33(2):8–12

    Google Scholar 

  26. Huang LJ, Cui XP, Geng L, Fu Y (2012) Effects of rolling deformation on microstructure and mechanical properties of network structured TiBw/Ti composites. Trans Nonferrous Met Soc 22:s79–83

    Article  Google Scholar 

  27. Mochida T, Taya M, Lloyd DJ (1991) Fracture of particles in a particle/metal matrix composite under plastic straining and its effect on the Young’s modulus of the composite. Mater Trans JIM 32:931–942

    Article  Google Scholar 

  28. Huang LJ, Zhang YZ, Liu BX, Song XQ, Geng L, Wu LZ (2013) Superplastic tensile characteristics of in situ TiBw/Ti6Al4V composites with novel network microstructure. Mater Sci Eng A 581:128–132

    Article  Google Scholar 

  29. Huang LJ, Zhang YZ, Liu BX, Song XQ, Geng L, Wu LZ (2013) Superplastic tensile characteristics of in situ TiBw/Ti6Al4V composites with novel network microstructure. Mater Sci Eng A 581:128–132

    Article  Google Scholar 

  30. Huang LJ, Geng L, Peng HX, Kaveendran B (2012) High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture. Mater Sci Eng A 534(1):688–692

    Article  Google Scholar 

  31. Sinha V, Srinivasan R, Tamirisakandala S, Miracle DB (2012) Superplastic behavior of Ti–6Al–4V–0.1B alloy. Mater Sci Eng A 539:7–12

    Article  Google Scholar 

  32. Edington JW, Melton KN, Cutler CP (1976) Superplasticity. Prog Mater Sci 21:61–170

    Article  Google Scholar 

  33. Lu JQ, Qin JN, Chen YF, Zhang ZW, Lu WJ, Zhang D (2010) Superplasticity of coarse-grained (TiB + TiC)/Ti–6Al–4V composite. J Alloy Compd 490:118–123

    Article  Google Scholar 

  34. Wang MM, Lu WJ, Qin JN, Zhang D, Ji B, Zhu F (2005) Superplastic behavior of in situ synthesized (TiB + TiC)/Ti matrix composite. Scripta Mater 53:265–270

    Article  Google Scholar 

  35. Meier ML, Lesuer DR, Mukherjee AK (1991) α Grain size and β volume fraction aspects of the superplasticity of Ti-6Al-4V. Mater Sci Eng, A 136:71–78

    Article  Google Scholar 

  36. Weiss I, Semiatin SL (1999) Thermomechanical processing of alpha titanium alloys-an overview. Mater Sci Eng A 263:243–256

    Article  Google Scholar 

  37. Huang LJ, Lu CJ, Yuan B, Wei SL, Cui XP, Geng L (2016) Comparative study on superplastic tensile behaviors of the as-extruded Ti6Al4V alloys and TiBw/Ti6Al4V composites with tailored architecture. Mater Des 93:81–90

    Article  Google Scholar 

  38. Guo X, Wang L, Wang M, Qin J, Zhang D, Lu W (2012) Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites. Acta Mater 60:2656–2667

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lujun Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Huang, L., Geng, L. (2017). Hot Deformation Behaviors of TiBw/Ti6Al4V Composites with Network Microstructure. In: Discontinuously Reinforced Titanium Matrix Composites. Springer, Singapore. https://doi.org/10.1007/978-981-10-4449-6_5

Download citation

Publish with us

Policies and ethics