Advertisement

Controlling the Electrical Property of Highly Conductive Pyrazine Single-Molecule Junction

  • Satoshi KanekoEmail author
Chapter
  • 213 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In Chap.  6, N2 was successfully placed between Pt electrodes. The lone pair of N2 formed a single-molecule junction with a high, well-defined conductance value. In this chapter, an application of the pyrazine single-molecule junction is investigated based on the findings in Chap.  6. Pyrazine is expected to have two conductance states. One is the configuration where a π orbital is parallel to the bonding direction. The other is the configuration where a p orbital is vertical to the bonding direction. Here, bi-stable states were fabricated, and their configurations were investigated in terms of their conductance and differential conductance, near edge X-ray fine structure, and theoretical calculations. The defined configurations were switched by an external force. The electrical properties of the single-molecule junction were controlled by changing the interface structure.

Keywords

Lone Pair Separation Distance Multilayer Film Conductance State Monolayer Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.C. Jia, J.Y. Wang, C.J. Yao, Y. Cao, Y.W. Zhong, Z.R. Liu, Z.F. Liu, X.F. Guo, Conductance switching and mechanisms in single-molecule junctions. Angew. Chem. Int. Ed. 52, 8666–8670 (2013)CrossRefGoogle Scholar
  2. 2.
    D. Dulic, S.J. van der Molen, T. Kudernac, H.T. Jonkman, J.J.D. de Jong, T.N. Bowden, J. van Esch, B.L. Feringa, B.J. van Wees, One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003)CrossRefGoogle Scholar
  3. 3.
    F. Schwarz, G. Kastlunger, F. Lissel, C. Egler-Lucas, S.N. Semenov, K. Venkatesan, H. Berke, R. Stadler, E. Lortscher, Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. Nat. Nanotechnol. 11, 170–176 (2016)CrossRefGoogle Scholar
  4. 4.
    W.H. Zhu, G.H. Ding, B. Dong, Negative differential conductance and hysteretic current switching of benzene molecular junction in a transverse electric field. Nanotechnology 25, 465202 (2014)CrossRefGoogle Scholar
  5. 5.
    R.X. Wu, R.Y. Chen, C.B. Qin, Y. Gao, Z.X. Qiao, G.F. Zhang, L.T. Xiao, S.T. Jia, An electric field induced reversible single-molecule fluorescence switch. Chem. Commun. 51, 7368–7371 (2015)CrossRefGoogle Scholar
  6. 6.
    I. Franco, C.B. George, G.C. Solomon, G.C. Schatz, M.A. Ratner, Mechanically activated molecular switch through single-molecule pulling. J. Am. Chem. Soc. 133, 2242–2249 (2011)CrossRefGoogle Scholar
  7. 7.
    S.Y. Quek, M. Kamenetska, M.L. Steigerwald, H.J. Choi, S.G. Louie, M.S. Hybertsen, J.B. Neaton, L. Venkataraman, Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4, 230–234 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Kaneko, C. Motta, G.P. Brivio, M. Kiguchi, Mechanically controllable bi-stable states in a highly conductive single pyrazine molecular junction. Nanotechnology 24, 315201 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Kiguchi, T. Ohto, S. Fujii, K. Sugiyasu, S. Nakajima, M. Takeuchi, H. Nakamura, Single molecular resistive switch obtained via sliding multiple anchoring points and varying effective wire length. J. Am. Chem. Soc. 136, 7327–7332 (2014)CrossRefGoogle Scholar
  10. 10.
    Y.F. Wang, J. Kroger, R. Berndt, W.A. Hofer, Pushing and pulling a Sn Ion through an adsorbed phthalocyanine molecule. J. Am. Chem. Soc. 131, 3639–3643 (2009)CrossRefGoogle Scholar
  11. 11.
    T.A. Su, H.X. Li, M.L. Steigerwald, L. Venkataraman, C. Nuckolls, Stereoelectronic switching in single-molecule junctions. Nat. Chem. 7, 215–220 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Kim, H. Song, F. Strigl, H.F. Pernau, T. Lee, E. Scheer, Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. Phys. Rev. Lett. 106, 196804 (2011)CrossRefGoogle Scholar
  13. 13.
    E.G. Emberly, G. Kirczenow, The smallest molecular switch. Phys. Rev. Lett. 91, 188301 (2003)CrossRefGoogle Scholar
  14. 14.
    Y. Kitaguchi, S. Habuka, H. Okuyama, S. Hatta, T. Aruga, T. Frederiksen, M. Paulsson, H. Ueba, Controlling single-molecule junction conductance by molecular interactions. Sci. Rep. 5, 11796 (2015)CrossRefGoogle Scholar
  15. 15.
    W. Haiss, C.S. Wang, I. Grace, A.S. Batsanov, D.J. Schiffrin, S.J. Higgins, M.R. Bryce, C.J. Lambert, R.J. Nichols, Precision control of single-molecule electrical junctions. Nat. Mater. 5, 995–1002 (2006)CrossRefGoogle Scholar
  16. 16.
    C.R. Hickenboth, J.S. Moore, S.R. White, N.R. Sottos, J. Baudry, S.R. Wilson, Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007)CrossRefGoogle Scholar
  17. 17.
    D.A. Davis, A. Hamilton, J.L. Yang et al., Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009)CrossRefGoogle Scholar
  18. 18.
    C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath, Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)CrossRefGoogle Scholar
  19. 19.
    M. Taniguchi, M. Tsutsui, K. Yokota, T. Kawai, Mechanically-controllable single molecule switch based on configuration specific electrical conductivity of metal-molecule-metal junctions. Chem. Sci. 1, 247–253 (2010)CrossRefGoogle Scholar
  20. 20.
    N.D. Lang, P. Avouris, Electrical conductance of individual molecules. Phys. Rev. B 64, 125323 (2001)CrossRefGoogle Scholar
  21. 21.
    J.Q. Hou, H.S. Kang, K.W. Kim, J.R. Hahn, Binding characteristics of pyridine on Ag(110). J. Chem. Phys. 128, 134707 (2008)CrossRefGoogle Scholar
  22. 22.
    D.B. Dougherty, J. Lee, J.T. Yates, Role of conformation in the electronic properties of chemisorbed pyridine on Cu(110): an Stm/Sts study. J. Phys. Chem. B 110, 11991–11996 (2006)CrossRefGoogle Scholar
  23. 23.
    S. Kaneko, M. Kiguchi, Investigation on the pyrazine molecular junction studied by conductance measurement and near edge X-ray absorption fine structure. Fuller. Nanotub. Car. 22, 166–172 (2014)CrossRefGoogle Scholar
  24. 24.
    J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for Ab initio order-N materials simulation. J. Phys.-Condens. Mat. 14, 2745–2779 (2002)CrossRefGoogle Scholar
  25. 25.
    E. Artacho, E. Anglada, O. Dieguez et al., The SIESTA Method; developments and applicability. J. Phys.-Condens. Mat. 20, 064208 (2008)CrossRefGoogle Scholar
  26. 26.
    M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)CrossRefGoogle Scholar
  27. 27.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  28. 28.
    M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J.C. Cuevas, J.M. van Ruitenbeek, Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys. Rev. Lett. 101, 046801 (2008)CrossRefGoogle Scholar
  29. 29.
    N. Agrait, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003)CrossRefGoogle Scholar
  30. 30.
    W.Y. Wang, T. Lee, I. Kretzschmar, M.A. Reed, Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 4, 643–646 (2004)CrossRefGoogle Scholar
  31. 31.
    A.V. Khotkevich, Modern state of point contact spectroscopy of electron-phonon interaction in transition metals. Phys. B 218, 31–34 (1996)CrossRefGoogle Scholar
  32. 32.
    M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente, M. Brandbyge, Unified description of inelastic propensity rules for electron transport through nanoscale junctions. Phys. Rev. Lett. 100, 226604 (2008)CrossRefGoogle Scholar
  33. 33.
    M. Kumar, R. Avriller, A.L. Yeyati, J.M. van Ruitenbeek, Detection of vibration-mode scattering in electronic shot noise. Phys. Rev. Lett. 108, 146602 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Untiedt, G.R. Bollinger, S. Vieira, N. Agrait, Quantum interference in atomic-sized point contacts. Phys. Rev. B 62, 9962–9965 (2000)CrossRefGoogle Scholar
  35. 35.
    B. Ludoph, M.H. Devoret, D. Esteve, C. Urbina, J.M. van Ruitenbeek, Evidence for saturation of channel transmission from conductance fluctuations in atomic-size point contacts. Phys. Rev. Lett. 82, 1530–1533 (1999)CrossRefGoogle Scholar
  36. 36.
    A.L. Johnson, E.L. Muetterties, J. Stohr, F. Sette, Chemisorption geometry of pyridine on Pt(111) by Nexafs. J. Phys. Chem. 89, 4071–4075 (1985)CrossRefGoogle Scholar
  37. 37.
    J.A. Horsley, J. Stohr, A.P. Hitchcock, D.C. Newbury, A.L. Johnson, F. Sette, Resonances in the K-shell excitation-spectra of benzene and pyridine—gas-phase, solid, and chemisorbed states. J. Chem. Phys. 83, 6099–6107 (1985)CrossRefGoogle Scholar
  38. 38.
    C. Toher, A. Filippetti, S. Sanvito, K. Burke, Self-interaction errors in density-functional calculations of electronic transport. Phys. Rev. Lett. 95, 146402 (2005)CrossRefGoogle Scholar
  39. 39.
    Y.S. Park, A.C. Whalley, M. Kamenetska, M.L. Steigerwald, M.S. Hybertsen, C. Nuckolls, L. Venkataraman, Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–157689 (2007)CrossRefGoogle Scholar
  40. 40.
    W. Hong, D.Z. Manrique, P. Moreno-Garcia, M. Gulcur, A. Mishchenko, C.J. Lambert, M.R. Bryce, T. Wandlowski, Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134, 2292–2304 (2012)CrossRefGoogle Scholar
  41. 41.
    A. Mishchenko, L.A. Zotti, D. Vonlanthen, M. Burkle, F. Pauly, J.C. Cuevas, M. Mayor, T. Wandlowski, Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133, 184–187 (2011)CrossRefGoogle Scholar
  42. 42.
    S. Kaneko, T. Nakazumi, M. Kiguchi, Fabrication of a well-defined single benzene molecule junction using Ag electrodes. J. Phys. Chem. Lett. 1, 3520–3523 (2010)CrossRefGoogle Scholar
  43. 43.
    M. Kiguchi, Electrical conductance of single C60 and benzene molecules bridging between Pt electrode. Appl. Phys. Lett. 95, 073301 (2009)CrossRefGoogle Scholar
  44. 44.
    M. Kiguchi, K. Murakoshi, Conductance of single C60 molecule bridging metal electrodes. J. Phys. Chem. C 112, 8140–8143 (2008)CrossRefGoogle Scholar
  45. 45.
    S. Kaneko, L. Wang, G.F. Luo et al., Electron transport through single endohedral Ce@C82 metallofullerenes. Phys. Rev. B 86, 155406 (2012)CrossRefGoogle Scholar
  46. 46.
    S. Kaneko, J.J. Zhang, J.W. Zhao, M. Kiguchi, Electronic conductance of platinum atomic contact in a nitrogen atmosphere. J. Phys. Chem. C 117, 9903–9907 (2013)CrossRefGoogle Scholar
  47. 47.
    M. Paulsson, M. Brandbyge, Transmission eigenchannels from nonequilibrium green’s functions. Phys. Rev. B 76, 115117 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations