Advertisement

Anchoring Groups Enclosed in the π-Conjugated System in N2 Molecules

  • Satoshi KanekoEmail author
Chapter
  • 185 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In the previous chapter, single-molecule junctions with a high, well-defined conductance value were fabricated by designing the interaction between molecule and metal and spherical structure. In order to control the electrical properties of the single-molecule junction, it is important to control their interface structure. The anchoring groups enclosed in π-conjugated systems are expected to fix the connecting points with high conductivity. Here, N2 is discussed as the simplest π-conjugated system with anchoring points. The MCBJ technique combined with theoretical calculations reveals the basic properties of the π-conjugated system with anchoring points: formation and conductance value of the singe-molecule junction.

Keywords

Metal Electrode Kondo Effect Breaking Process Atomic Contact Metal Nanowire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Ohnishi, Y. Kondo, K. Takayanagi, Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998)CrossRefGoogle Scholar
  2. 2.
    G. Rubio-Bollinger, S.R. Bahn, N. Agraït, K.W. Jacobsen, S. Vieira, Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87, 026101 (2001)CrossRefGoogle Scholar
  3. 3.
    W.H. Thijssen, D. Marjenburgh, R.H. Bremmer, J.M. van Ruitenbeek, Oxygen-enhanced atomic chain formation. Phys. Rev. Lett. 96, 026806 (2006)CrossRefGoogle Scholar
  4. 4.
    T. Nakazumi, M. Kiguchi, Formation of Co atomic wire in hydrogen atmosphere. J. Phys. Chem. Lett. 1, 923–926 (2010)CrossRefGoogle Scholar
  5. 5.
    R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. van Hemert, J.M. van Ruitenbeek, Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002)CrossRefGoogle Scholar
  6. 6.
    D. Djukic, J.M. van Ruitenbeek, Shot noise measurements on a single molecule. Nano Lett. 6, 789–793 (2006)CrossRefGoogle Scholar
  7. 7.
    K. Aika, A. Ohya, A. Ozaki, Y. Inoue, I. Yasumori, Support and promoter effect of ruthenium catalyst: II. Ruthenium alkaline-earth catalyst for activation of dinitrogen. J. Catal. 92, 305–311 (1985)CrossRefGoogle Scholar
  8. 8.
    E.P.M. Amorim, E.Z. da Silva, Mechanochemistry in Cu nanowires: N and N2 enhancing the atomic chain formation. Phys. Rev. B 82, 153403 (2010)CrossRefGoogle Scholar
  9. 9.
    E.P.M. Amorim, E.Z. da Silva, Effect of light impurities on the electronic structure of copper nanowires. Phys. Rev. B 85, 155407 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J.C. Cuevas, J.M. van Ruitenbeek, Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys. Rev. Lett. 101, 046801 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Kaneko, T. Nakazumi, M. Kiguchi, Fabrication of a well-defined single benzene molecule junction using ag electrodes. J. Phys. Chem. Lett. 1, 3520–3523 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Kiguchi, S. Miura, K. Hara, M. Sawamura, K. Murakoshi, Conductance of single 1,4-disubstituted benzene molecules anchored to Pt electrodes. Appl. Phys. Lett. 91, 053110 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Kiguchi, H. Nakamura, Y. Takahashi, T. Takahashi, T. Ohto, Effect of anchoring group position on formation and conductance of a single disubstituted benzene molecule bridging Au electrodes: change of conductive molecular orbital and electron pathway. J. Phys. Chem. C 114, 22254–22261 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Kiguchi, T. Nakazumi, K. Hashimoto, K. Murakoshi, Atomic motion in H2 and D2 single-molecule junctions induced by phonon excitation. Phys. Rev. B 81, 045420 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Kaneko, Y. Nakamura, J.J. Zhang, X.B. Yang, J.W. Zhao, M. Kiguchi, Formation of single Cu atomic chain in nitrogen atmosphere. J. Phys. Chem. C 119, 862–866 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Kaneko, J.J. Zhang, J.W. Zhao, M. Kiguchi, Electronic conductance of platinum atomic contact in a nitrogen atmosphere. J. Phys. Chem. C 117, 9903–9907 (2013)CrossRefGoogle Scholar
  17. 17.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., Gaussian 09, Revision A.02. (Gaussian, Inc.,Wallingford CT, USA, 2009)Google Scholar
  18. 18.
    N. Agrait, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003)CrossRefGoogle Scholar
  19. 19.
    M. Kumar, O. Tal, R.H.M. Smit, A. Smogunov, E. Tosatti, J.M. van Ruitenbeek, Shot noise and magnetism of Pt atomic chains: accumulation of points at the boundary. Phys. Rev. B 88, 245431 (2013)CrossRefGoogle Scholar
  20. 20.
    B.C. Stipe, M.A. Rezaei, W. Ho, Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998)CrossRefGoogle Scholar
  21. 21.
    A.V. Khotkevich, Modern state of point contact spectroscopy of electron-phonon interaction in transition metals. Phys. B 218, 31–34 (1996)CrossRefGoogle Scholar
  22. 22.
    V.V. Khotkevich, Elastic point-contact spectroscopy of electron-phonon interaction in superconductors. Phys. B 218, 39–41 (1996)CrossRefGoogle Scholar
  23. 23.
    K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, Iv. Constants of Diatomic Molecules. (van Nostrand Reinhold Inc., New York, 1979)Google Scholar
  24. 24.
    M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente, M. Brandbyge, Unified description of inelastic propensity rules for electron transport through nanoscale junctions. Phys. Rev. Lett. 100, 226604 (2008)CrossRefGoogle Scholar
  25. 25.
    O. Tal, M. Krieger, B. Leerink, J.M. van Ruitenbeek, Electron-vibration interaction in single-molecule junctions: from contact to tunneling regimes. Phys. Rev. Lett. 100, 196804 (2008)CrossRefGoogle Scholar
  26. 26.
    Y. Kim, T. Pietsch, A. Erbe, W. Belzig, E. Scheer, Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett. 11, 3734–3738 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Kiguchi, R. Stadler, I. Kristensen, D. Djukic, J. Van Ruitenbeek, Evidence for a single hydrogen molecule connected by an atomic chain. Phys. Rev. Lett. 98, 146802 (2007)CrossRefGoogle Scholar
  28. 28.
    G.R. de Sousa, J.F. Silva, E. Vernek, Kondo effect in a quantum wire with spin-orbit coupling. Phys. Rev. B 94, 125115 (2016)CrossRefGoogle Scholar
  29. 29.
    H. Jeong, A.M. Chang, M.R. Melloch, The kondo effect in an artificial quantum dot molecule. Science 293, 2221–2223 (2001)CrossRefGoogle Scholar
  30. 30.
    K. Le Hur, Condensed-matter physics: quantum dots and the kondo effect. Nature 526, 203–204 (2015)CrossRefGoogle Scholar
  31. 31.
    D. Rakhmilevitch, R. Korytar, A. Bagrets, F. Evers, O. Tal, Electron-vibration interaction in the presence of a switchable kondo resonance realized in a molecular junction. Phys. Rev. Lett. 113, 236603 (2014)CrossRefGoogle Scholar
  32. 32.
    D. Rakhmilevitch, O. Tal, Vibration-mediated kondo transport in molecular junctions: conductance evolution during mechanical stretching. Beilstein J. Nanotech. 6, 2417–2422 (2015)CrossRefGoogle Scholar
  33. 33.
    C.H. MacGillavry, G.D. Rieck (eds.), International Tables for X-Ray Crystallography (Kynoch Press Birmingham, UK, 1968)Google Scholar
  34. 34.
    A.I. Yanson, G.R. Bollinger, H.E. Van den Brom, N. Agraït, J.M. van Ruitenbeek, Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998)CrossRefGoogle Scholar
  35. 35.
    W.R. French, C.R. Iacovella, P.T. Cummings, The influence of molecular adsorption on elongating gold nanowires. J. Phys. Chem. C 115, 18422–18433 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations