Advertisement

Introduction

  • Satoshi KanekoEmail author
Chapter
  • 177 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter provides a general introduction to this thesis. The structure of the single-molecule junction has attracted wide interest in the fields of basic science and engineering because a one-dimensional conductor with metal–molecular interface has novel properties and potential application in electric components. Among the several factors that affect the electric properties of single-molecule junctions, the interface structure is especially important. This chapter summarizes the current achievements and problems regarding the interface of single-molecule junctions and discusses the corresponding solutions.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Scanning Tunneling Microscopy Metal Electrode Molecular Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.H. Dennard, F.H. Gaenssle, H.N. Yu, V.L. Rideout, E. Bassous, A.R. Leblanc, Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J Solid-St Circ 9, 256–268 (1974)CrossRefGoogle Scholar
  2. 2.
    G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998)CrossRefGoogle Scholar
  3. 3.
    A. Aviram, M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)CrossRefGoogle Scholar
  4. 4.
    A.I. Yanson, G.R. Bollinger, H.E. Van den Brom, N. Agraït, J.M. van Ruitenbeek, Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998)CrossRefGoogle Scholar
  5. 5.
    R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. van Hemert, J.M. van Ruitenbeek, Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002)CrossRefGoogle Scholar
  6. 6.
    M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Conductance of a molecular junction. Science 278, 252–254 (1997)CrossRefGoogle Scholar
  7. 7.
    S. Sakata, K. Yoshida, Y. Kitagawa, K. Ishii, K. Hirakawa, Rotation and anisotropic molecular orbital effect in a single H2TPP molecule transistor. Phys. Rev. Lett. 111, 246806 (2013)CrossRefGoogle Scholar
  8. 8.
    M.L. Perrin, R. Frisenda, M. Koole et al., Large negative differential conductance in single-molecule break junctions. Nat. Nanotechnol. 9, 830–834 (2014)CrossRefGoogle Scholar
  9. 9.
    B. Capozzi, J.L. Xia, O. Adak, E.J. Dell, Z.F. Liu, J.C. Taylor, J.B. Neaton, L.M. Campos, L. Venkataraman, Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015)CrossRefGoogle Scholar
  10. 10.
    I. Diez-Perez, J. Hihath, Y. Lee, L.P. Yu, L. Adamska, M.A. Kozhushner, I.I. Oleynik, N.J. Tao, Rectification and Stability of a single molecular diode with controlled orientation. Nat. Chem. 1, 635–641 (2009)CrossRefGoogle Scholar
  11. 11.
    D. Dulic, S.J. van der Molen, T. Kudernac, H.T. Jonkman, J.J.D. de Jong, T.N. Bowden, J. van Esch, B.L. Feringa, B.J. van Wees, One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003)CrossRefGoogle Scholar
  12. 12.
    S.Y. Quek, M. Kamenetska, M.L. Steigerwald, H.J. Choi, S.G. Louie, M.S. Hybertsen, J.B. Neaton, L. Venkataraman, Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4, 230–234 (2009)CrossRefGoogle Scholar
  13. 13.
    S.Y. Guo, J. Hihath, I. Diez-Perez, N.J. Tao, Measurement and statistical analysis of single-molecule current-voltage characteristics, transition voltage spectroscopy, and tunneling barrier height. J. Am. Chem. Soc. 133, 19189–19197 (2011)CrossRefGoogle Scholar
  14. 14.
    S.Y. Guo, G. Zhou, N.J. Tao, Single molecule conductance, thermopower, and transition voltage. Nano Lett. 13, 4326–4332 (2013)CrossRefGoogle Scholar
  15. 15.
    P. Reddy, S.Y. Jang, R.A. Segalman, A. Majumdar, Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007)CrossRefGoogle Scholar
  16. 16.
    T. Kim, P. Darancet, J.R. Widawsky, M. Kotiuga, S.Y. Quek, J.B. Neaton, L. Venkataraman, Determination of energy level alignment and coupling strength in 4,4′-Bipyridine single-molecule junctions. Nano Lett. 14, 794–798 (2014)CrossRefGoogle Scholar
  17. 17.
    S.K. Yee, J.A. Malen, A. Majumdar, R.A. Segalman, Thermoelectricity in fullerene-metal heterojunctions. Nano Lett. 11, 4089–4094 (2011)CrossRefGoogle Scholar
  18. 18.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)CrossRefGoogle Scholar
  19. 19.
    Y. Kim, W. Jeong, K. Kim, W. Lee, P. Reddy, Electrostatic control of thermoelectricity in molecular junctions. Nat. Nanotechnol. 9, 881–885 (2014)CrossRefGoogle Scholar
  20. 20.
    D. Djukic, K.S. Thygesen, C. Untiedt, R.H.M. Smit, K.W. Jacobsen, J.M. van Ruitenbeek, Stretching dependence of the vibration modes of a single-molecule Pt − H2 − Pt bridge. Phys. Rev. B 71, 161402(R) (2005)CrossRefGoogle Scholar
  21. 21.
    O. Tal, M. Krieger, B. Leerink, J.M. van Ruitenbeek, Electron-vibration interaction in single-molecule junctions: from contact to tunneling regimes. Phys. Rev. Lett. 100, 196804 (2008)CrossRefGoogle Scholar
  22. 22.
    D. Djukic, J.M. van Ruitenbeek, Shot noise measurements on a single molecule. Nano Lett. 6, 789–793 (2006)CrossRefGoogle Scholar
  23. 23.
    M. Kumar, O. Tal, R.H.M. Smit, A. Smogunov, E. Tosatti, J.M. van Ruitenbeek, Shot noise and magnetism of pt atomic chains: accumulation of points at the boundary. Phys. Rev. B 88, 245431 (2013)CrossRefGoogle Scholar
  24. 24.
    W.B. Chen, H.X. Li, J.R. Widawsky, C. Appayee, L. Venkataraman, R. Breslow, Aromaticity decreases single-molecule junction conductance. J. Am. Chem. Soc. 136, 918–920 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Mahendran, P. Gopinath, R. Breslow, Single molecule conductance of aromatic, nonaromatic, and partially antiaromatic systems. Tetrahedron Lett. 56, 4833–4835 (2015)CrossRefGoogle Scholar
  26. 26.
    X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W.R. Salaneck, J.L. Bredas, Characterization of the interface dipole at organic/metal interfaces. J. Am. Chem. Soc. 124, 8131–8141 (2002)CrossRefGoogle Scholar
  27. 27.
    O.T. Hofmann, P. Rinke, M. Scheffler, G. Heimel, Integer versus fractional charge transfer at metal(/insulator)/organic interfaces: Cu(/Nacl)/Tcne. ACS Nano 9, 5391–5404 (2015)CrossRefGoogle Scholar
  28. 28.
    N. Koch, S. Duhm, J.P. Rabe, A. Vollmer, R.L. Johnson, Optimized hole injection with strong electron acceptors at organic-metal interfaces. Phys. Rev. Lett. 95, 237601 (2005)CrossRefGoogle Scholar
  29. 29.
    X.Y. Xiao, B.Q. Xu, N.J. Tao, Conductance titration of single-peptide molecules. J. Am. Chem. Soc. 126, 5370–5371 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Tsutsui, Y. Teramae, S. Kurokawa, A. Sakai, High-conductance states of single benzenedithiol molecules. Appl. Phys. Lett. 89, 163111 (2006)CrossRefGoogle Scholar
  31. 31.
    C. Bruot, J. Hihath, N.J. Tao, Mechanically controlled molecular orbital alignment in single molecule junctions. Nat. Nanotechnol. 7, 35–40 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Ghosh, H. Halimun, A.K. Mahapatro, J. Choi, S. Lodha, D. Janes, Device structure for electronic transport through individual molecules using nanoelectrodes. Appl. Phys. Lett. 87, 233509 (2005)CrossRefGoogle Scholar
  33. 33.
    Y. Kim, T. Pietsch, A. Erbe, W. Belzig, E. Scheer, Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett. 11, 3734–3738 (2011)CrossRefGoogle Scholar
  34. 34.
    R. Stadler, Fermi level alignment in single molecule junctions and its dependence on interface structure. J. Phys. Conf. Ser. 61, 1097–1101 (2007)CrossRefGoogle Scholar
  35. 35.
    W. Haiss, C.S. Wang, I. Grace, A.S. Batsanov, D.J. Schiffrin, S.J. Higgins, M.R. Bryce, C.J. Lambert, R.J. Nichols, Precision control of single-molecule electrical junctions. Nat. Mater. 5, 995–1002 (2006)CrossRefGoogle Scholar
  36. 36.
    Y. Kitaguchi, S. Habuka, H. Okuyama, S. Hatta, T. Aruga, T. Frederiksen, M. Paulsson, H. Ueba, Controlling single-molecule junction conductance by molecular interactions. Sci. Rep. 5, 11796 (2015)CrossRefGoogle Scholar
  37. 37.
    D. Darau, G. Begemann, A. Donarini, M. Grifoni, Interference effects on the transport characteristics of a benzene single-electron transistor. Phys. Rev. B 79, 235404 (2009)CrossRefGoogle Scholar
  38. 38.
    C.M. Guedon, H. Valkenier, T. Markussen, K.S. Thygesen, J.C. Hummelen, S.J. van der Molen, Observation of quantum interference in molecular charge transport. Nat. Nanotechnol. 7, 304–308 (2012)CrossRefGoogle Scholar
  39. 39.
    M. Taniguchi, M. Tsutsui, R. Mogi, T. Sugawara, Y. Tsuji, K. Yoshizawa, T. Kawai, Dependence of single-molecule conductance on molecule junction symmetry. J. Am. Chem. Soc. 133, 11426–11429 (2011)CrossRefGoogle Scholar
  40. 40.
    M.L. Perrin, F. Prins, C.A. Martin et al., Influence of the chemical structure on the stability and conductance of porphyrin single-molecule junctions. Angew. Chem. Int. Ed. 50, 11223–11226 (2011)CrossRefGoogle Scholar
  41. 41.
    B.Q. Xu, X.L. Li, X.Y. Xiao, H. Sakaguchi, N.J. Tao, Electromechanical and conductance switching properties of single oligothiophene molecules. Nano Lett. 5, 1491–1495 (2005)CrossRefGoogle Scholar
  42. 42.
    F. Schwarz, G. Kastlunger, F. Lissel, C. Egler-Lucas, S.N. Semenov, K. Venkatesan, H. Berke, R. Stadler, E. Lortscher, Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. Nat. Nanotechnol. 11, 170–176 (2016)CrossRefGoogle Scholar
  43. 43.
    Y.S. Park, A.C. Whalley, M. Kamenetska, M.L. Steigerwald, M.S. Hybertsen, C. Nuckolls, L. Venkataraman, Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–157689 (2007)CrossRefGoogle Scholar
  44. 44.
    R. Frisenda, S. Tarkuc, E. Galan, M.L. Perrin, R. Eelkema, F.C. Grozema, H.S.J. van der Zant, Electrical properties and mechanical stability of anchoring groups for single-molecule electronics. Beilstein J. Nanotech. 6, 1558–1567 (2015)CrossRefGoogle Scholar
  45. 45.
    L. Venkataraman, J.E. Klare, I.W. Tam, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006)CrossRefGoogle Scholar
  46. 46.
    Y. Ie, T. Hirose, H. Nakamura, M. Kiguchi, N. Takagi, M. Kawai, Y. Aso, Nature of electron transport by pyridine-based tripodal anchors: potential for robust and conductive single-molecule junctions with gold electrodes. J. Am. Chem. Soc. 133, 3014–3022 (2011)CrossRefGoogle Scholar
  47. 47.
    C.A. Martin, D. Ding, J.K. Sorensen, T. Bjornholm, J.M. van Ruitenbeek, H.S.J. van der Zant, Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 13198–13199 (2008)CrossRefGoogle Scholar
  48. 48.
    J. Ferrer, V.M. Garcia-Suarez, Tuning the conductance of molecular junctions: transparent versus tunneling regimes. Phys. Rev. B 80, 085426 (2009)CrossRefGoogle Scholar
  49. 49.
    M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J.C. Cuevas, J.M. van Ruitenbeek, Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys. Rev. Lett. 101, 046801 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations