Performance Comparison of Two Real-Time Power System Frequency Estimation Methods

  • R. B. SharmaEmail author
  • G. M. Dhole
  • M. B. Tasare
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 436)


A comparative study of two well-known online power system frequency estimation methods is presented in this paper. These methods are least squares error (LES) and least squares new approach (LS). The performance of the frequency estimation methods is tested in laboratory with an Advantech data acquisition system and Matlab tool. The performance of LS online frequency estimation method with and without filtering is examined along with LES method. The experimental results show that the frequency measurement method using LES could be the optimal frequency measurement method, and thus can be applied to frequency measurement apparatus.


Frequency Taylor series Least square Sample Sampling rate 


  1. 1.
    Phadke, A.G., Thorp, J.S., Adamiak, M.G.: A new measurement technique for tracking voltage phasors, local system frequency and rate of change of frequency. IEEE Trans. Power Apparatus. Syst. PAS-102, 1025–1038 (1983)CrossRefGoogle Scholar
  2. 2.
    Girgis, A.A., Ham, F.M.: A FFT based digital relay for load shedding. IEEE Trans. Power Apparatus Syst. PAS-101, 433–439 (1982)CrossRefGoogle Scholar
  3. 3.
    Wang, M., Sun, Y.: A practical, precise method for frequency tracking and phasor estimation. IEEE Trans. on Power Delivery 19(4), 1547–1552 (2004)CrossRefGoogle Scholar
  4. 4.
    Terzija, V., Djuric, M., Kovacevic, B.: A new self tuning algorithm for the frequency estimation of distorted signals. IEEE Trans. Power Delivery 10(4), 1779–1785 (1995)CrossRefGoogle Scholar
  5. 5.
    Nguyen, C.T., Srinivasan, K.: A new technique for rapid tracking of frequency deviations based on level crossings. IEEE Trans. Power Apparatus Syst. 103(8), 2230–2236 (1984)CrossRefGoogle Scholar
  6. 6.
    Routray, Y., Pradhan, A.K., Rao, K.P.: A novel Kalman filter for frequency estimation of distorted signals in power systems. IEEE Trans. Instrum. Meas. 51, 469–479 (2002)CrossRefGoogle Scholar
  7. 7.
    Girgis, A.A., Hwang, T.L.D.: Optimal estimation of voltage phasors and frequency deviation using linear and nonlinear Kalman filtering. IEEE Trans. Power Apparatus. Syst. PAS-103, 2943–2949 (1984)CrossRefGoogle Scholar
  8. 8.
    Dash, P.K., Pradhan, A.K., Panda, G.: Frequency estimation of distorted power system signals using extended complex Kalman filter. IEEE Trans. Power Delivery 14, 761–766 (1999)CrossRefGoogle Scholar
  9. 9.
    Lin, T., Tsuji, M., Yamada, E.: Wavelet approach to real time estimation of power system frequency. SICE 2001, Tokyo, Japan (2001)Google Scholar
  10. 10.
    Lai, L.L., Chan, W.L., Tse, C.T.: Real-time frequency and harmonic evaluation using artificial neural networks. IEEE Trans. Power Delivery 14, 52–59 (1999)CrossRefGoogle Scholar
  11. 11.
    Dash, P.K., Swain, D.P., Routray, A., Liew, A.C.: An adaptive neural network approach for the estimation of power system frequency. Elect. Power Syst. Res. 41, 203–210 (1997)CrossRefGoogle Scholar
  12. 12.
    Karimi-Ghartemani, M., Bakhshai, A.: Application of enhanced phase locked loop system to the computation of synchrophasors. IEEE Trans. Power Delivery 26(1), 22–32 (2011)CrossRefGoogle Scholar
  13. 13.
    Mojiri, M., Karimi-Ghartemani, M., Bakhshai, A.: Estimation of power system frequency using an adaptive notch filters. IEEE Trans. Instrum. Meas. 56(6), 2470–2477 (2007)CrossRefGoogle Scholar
  14. 14.
    Kusljevic, M.D.: Simultaneous frequency and harmonic magnitude estimation using decoupled modules and multirate sampling. IEEE Trans. Instrum. Meas. 59(4), 954–962 (2011)CrossRefGoogle Scholar
  15. 15.
    Xia, Y., Mandic, D.P.: Widely linear adaptive frequency estimation of unbalanced three-phase power systems. IEEE Trans. Instrum. Meas. 61(1), 74–83 (2012)CrossRefGoogle Scholar
  16. 16.
    Kamwa, I., Samantaray, S.R., Joos, G.: Wide frequency rage adaptive phasor and frequency PMU algorithms. IEEE Trans. Smart. Grid 5(2), 569–579 (2014)CrossRefGoogle Scholar
  17. 17.
    He, Z., Fu, L., Han, W., Mai, R., Dong, Z.U.: Precise algorithms for frequency estimation under dynamic and step change conditions. IET Sci. Meas. Tech. 9(7), 842–851 (2015)CrossRefGoogle Scholar
  18. 18.
    Sachdev, M.S., Giray, M.M.: A least square technique for determining power system frequency. IEEE Trans. Power Apparatus. Syst. PAS-104, 437–443 (1985)CrossRefGoogle Scholar
  19. 19.
    Abdollahi, A., Matinfar, F.: Frequency estimation: a least squares new approach. IEEE Trans. Power Delivery 26(2), 790–798 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Government College of Engineering, ChandrapurChandrapurIndia
  2. 2.R.H. Sapat College of Engineering, Management Studies and ResearchNasikIndia
  3. 3.Prof. Ram Meghe College of Engineering and ManagementBadneraIndia

Personalised recommendations