Advertisement

Design and Analysis of Ultra-Low Power QCA Parity Generator Circuit

  • Trailokya Nath SasamalEmail author
  • Ashutosh Kumar Singh
  • Umesh Ghanekar
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 436)

Abstract

Quantum-dot cellular automata (QCA) are a new paradigm in nanoscale technology with high frequency and low power consumption capabilities. This work presents a low complexity two-input XOR gate, which achieves low power consumption compared to prior ones using an efficient five-input majority gate. To show the novelty of this structure, different bits even parity generators are addressed. The result shows proposed parity generators are more superior over the existing designs. We show a 32-bit even parity generator, which requires 40% less cell count and saves 50% area occupation over the previous best design. QCA Designer-2.0.3 and QCA Pro have been considered to evaluate the accuracy of presented designs and to evaluate the power dissipation respectively.

Keywords

QCA Parity generator XOR gate Majority gate Power dissipation 

References

  1. 1.
    Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3, 443–450 (2004)CrossRefGoogle Scholar
  2. 2.
    Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997)CrossRefGoogle Scholar
  3. 3.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. Appl. Phys. 75, 1818–1824 (1994)CrossRefGoogle Scholar
  4. 4.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRefGoogle Scholar
  5. 5.
    Hossein, A., Behjat, F., Ali, A.K.: High-performance low-leakage regions of nano-scaled CMOS digital gates under variations of threshold voltage and mobility. J. Zhejiang Univ. Sci C 13, 460–471 (2012)CrossRefGoogle Scholar
  6. 6.
    Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)CrossRefGoogle Scholar
  7. 7.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)CrossRefGoogle Scholar
  8. 8.
    Toth, G., Lent, C.S.: Quasi adiabatic switching for metal-island quantum-dot cellular automata. J. Appl. Phys. 85, 2977–2984 (1999)CrossRefGoogle Scholar
  9. 9.
    Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik 127(20), 8576–8591 (2016)CrossRefGoogle Scholar
  10. 10.
    Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCA Pro-an error power estimation tool for QCA circuit design, In: IEEE International Symposium Circuits System, pp. 2377–2380 (2011)Google Scholar
  11. 11.
    Sheikhfaal, S., Angizi, S., Sarmadi, S., Moaiyeri, M.H., Sayedsalehi, S.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46, 462–471 (2015)CrossRefGoogle Scholar
  12. 12.
    Mustafa, M., Beigh, M.R.: Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count. Indian J. Pure Appl. Phys. 51, 60–66 (2013)Google Scholar
  13. 13.
    Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10, 259–271 (2014)CrossRefGoogle Scholar
  14. 14.
    Beigh, M.R., Mustafa, M., Ahmad, F.: Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circuits Syst. 4, 147–156 (2013)CrossRefGoogle Scholar
  15. 15.
    Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCA designer: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)CrossRefGoogle Scholar
  16. 16.
    Niemier, M.T.: Designing digital systems in quantum cellular automata master’s thesis. University of Notre Dame, Notre Dame, Indiana, USA (2004)Google Scholar
  17. 17.
    Hashemi, S., Farazkish, R., Navi, K.: New quantum dot cellular automata cell arrangements. J. Comput. Theor. Nanosci. 10, 798–809 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Trailokya Nath Sasamal
    • 1
    Email author
  • Ashutosh Kumar Singh
    • 2
  • Umesh Ghanekar
    • 1
  1. 1.Department of Electronics & CommunicationNIT KurukshetraKurukshetraIndia
  2. 2.Department of Computer ApplicationsNIT KurukshetraKurukshetraIndia

Personalised recommendations