Control Algorithm Concept for AC Voltage Stabilizer Based on Hybrid Transformer with a Matrix Converter

  • Paweł SzcześniakEmail author
  • Jacek Kaniewski
  • Padmanaban Sanjeevikumar
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 436)


This paper presents the concept of a control algorithm and a study of its properties for an AC voltage stabilizer based on a three-phase hybrid transformer with matrix converter. Presented in this paper is an approach for obtaining continuous control of the voltage magnitude and phase shift using a conventional transformer with two windings and power electronics devices, referred to as a matrix converter. By adjustment of these voltage parameters we can reduce the effects of overvoltage and voltage sags. The concept of a closed-loop control algorithm and properties of the proposed voltage stabilizers are discussed in this paper.


Hybrid transformer AC voltage stabilizers Matrix converter 



The research was carried out within the scope of the project funded by the “National Science Centre, Poland” under the reference number 2015/19/D/ST7/01371.


  1. 1.
    Benysek, G.: Improvement in the Quality of Delivery of Electrical Energy Using PE Systems. Springer, London (2007)Google Scholar
  2. 2.
    Moreno-Munoz, A.: Power Quality: Mitigation Technologies in a Distributed Environment. Springer, London (2007)CrossRefGoogle Scholar
  3. 3.
    Choi, J.-H., Moon, S.-I.: The dead band control of LTC transformer at distribution substation. IEEE Trans. Power Sys. 24(1), 319–326 (2009)CrossRefGoogle Scholar
  4. 4.
    Kaniewski, J., Fedyczak, Z., Benysek, G.: AC voltage sag/swell compensator based on three-phase hybrid transformer with buck-boost matrix-reactance chopper. IEEE Trans. Ind. Electron. 61(8), 3835–3846 (2014)CrossRefGoogle Scholar
  5. 5.
    Burkard, J., Biela, J.: Evaluation of topologies and optimal design of a hybrid distribution transformer. In: European Conference on Power Electronics and Applications, In Proceedings EPE ‘15 ECCE Europe, Geneva, Switzerland, pp. 1–10 (2015)Google Scholar
  6. 6.
    Kaniewski, J.: Practical application of series active compensators. In: Benysek, G., Pasko, M (eds.) Power Theories for Improved Power Quality, pp. 187–210. Springer, London (2012)Google Scholar
  7. 7.
    She, X., Huang, A.Q., Burgos, R.: Review of solid-state transformer technologies and their application in power distribution systems. IEEE J. Emerg. Sel. Topics Power Electron. 1(3), 186–198 (2013)Google Scholar
  8. 8.
    Kolar, J.W., Ortiz, G.: Solid-state-transformers: key components of future traction and smart grid systems, In: Proceedings of the International Power Electronics Conference, IPEC and Proceedings of ECCE Asia 2014, Hiroshima, pp. 18–21 (2014)Google Scholar
  9. 9.
    Pinto, S.F., Mendes, P.V., Silva, J.F.: Modular matrix converter based solid state transformer for smart grids. Electr. Power Syst. Res. 136, 189–200 (2016)CrossRefGoogle Scholar
  10. 10.
    Kaniewski, J., Szcześniak, P., Jarnut, M., Benysek, G.: Hybrid voltage sag/swell compensators: a review of hybrid AC/AC converters. IEEE Ind. Electron. Mag. 9(4), 37–48 (2015)CrossRefGoogle Scholar
  11. 11.
    Szcześniak, P., Kaniweski, J.: Hybrid transformer with matrix converter. IEEE Trans. Power Del. 31(3), 1388–1396 (2016)CrossRefGoogle Scholar
  12. 12.
    Haj-Maharsi, M.Y., Tang, L., Gutierrez, R., Bala, S.: Hybrid distribution transformer with ac & dc power capabilities. US Patent US 2010/0201338 A1, ABB Research Ltd. (2010)Google Scholar
  13. 13.
    Haj-Maharsi, M.Y., Bala, S., Tang, L.: Hybrid distribution transformer with an integrated voltage source converter. US Patent US2010/0220499 A1, ABB Research Ltd. (2010)Google Scholar
  14. 14.
    Radi, M.A., Darwish, M., Alqarni, M.: Voltage regulation considerations for the design of hybrid distribution transformers. In: Proceedings of UPEC 2014, pp. 1–6 (2014)Google Scholar
  15. 15.
    Sastry, J., Bala, S.: Considerations for the design of power electronic modules for hybrid distribution transformers. In: Proceedings of ECCE 2013, pp. 1422–1428 (2013)Google Scholar
  16. 16.
    Bala, S., Das, D., Aeloiza, E., Maitra, A., Rajagopalan, S.: Hybrid distribution transformer: concept development and field demonstration. In: Proceedings of ECCE 2012, pp. 4061–4068 (2012)Google Scholar
  17. 17.
    Szcześniak, P., Kaniewski, J., Jarnut, M.: AC-AC power electronic converters without DC energy storage: a review. Energ. Convers. Manage. 92, 483–497 (2015)CrossRefGoogle Scholar
  18. 18.
    Szcześniak, P.: Three-Phase AC-AC power converters based on matrix converter topology. Matrix-Reactance Frequency Converters Concept. Springer, Berlin (2013)Google Scholar
  19. 19.
    Szcześniak, P., Kaniewski, J.: Power electronics converters without DC energy storage in the future electrical power network. Elec. Power Syst. Res. 129, 194–207 (2015)CrossRefGoogle Scholar
  20. 20.
    Nielsen, J.G., Blaabjerg, F., Mohan, N.: Control strategies for dynamic voltage restorer compensating voltage sags with phase jump. In: Proceedings APEC 2001, vol. 2, pp. 1267–1273 (2001)Google Scholar
  21. 21.
    Rodriguez, J., Rivera, M., Kolar, J.W., Wheeler, P.W.: A review of control and modulation methods for matrix converters. IEEE Trans. Ind. Electron. 59(1), 58–70 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Paweł Szcześniak
    • 1
    Email author
  • Jacek Kaniewski
    • 1
  • Padmanaban Sanjeevikumar
    • 2
  1. 1.Institute of Electrical EngineeringUniversity of Zielona GóraZielona GóraPoland
  2. 2.Department of Electrical and Electronics EngineeringUniversity of JohannesburgAuckland Park, JohannesburgSouth Africa

Personalised recommendations