Non-isolated Sextuple Output Hybrid Triad Converter Configurations for High Step-Up Renewable Energy Applications

  • Padmanaban SanjeevikumarEmail author
  • Mahajan Sagar Bhaskar
  • Pranav Dhond
  • Frede Blaabjerg
  • Michael Pecht
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 436)


This article presents a new non-isolated DC-DC sextuple output hybrid triad converter configurations for high step-up renewable energy applications. Total 8 (eight) converters configurations are obtained by combining SEPIC/SI-SEPIC, Cuk/SI-Cuk, and Boost/SI-Boost which is highly suitable for step-up renewable applications where DC-DC multi-output converters/choppers are needed; such as a solar multilevel DC-AC converter (MLI), HVDC, hybrid/electric and electric vehicles. The most important characteristics of the proposed converter configurations are (i) only one power control semiconductor switch, (ii) offer six different DC outputs with different conversion ratio, (iii) non-isolated (without transformers) Converter topologies, (iv) high voltage at the output side without using large duty cycle and (v) modular DC-DC converter structure. The simulation results are presented and it validates the practicability, functionality, and the idea of suggested sextuple output hybrid triad converter configuration.


Sextuple output Triad converter configurations Non-isolated Single control switch High step-up Renewable applications 


  1. 1.
    Patra, P., Patra, A., Misra, N.: A single inductor multiple output switcher with simultaneous Buck, Boost and inverter outputs. IEEE Trans. Power Electron. 27(4), 1936–1951 (2012)CrossRefGoogle Scholar
  2. 2.
    Wai, R.J., Jheng, K.H.: High-efficiency single-input multiple-output DC-DC converter. IEEE Trans. Power Electron. 28(2), 886–898 (2013)CrossRefGoogle Scholar
  3. 3.
    IHS Technology: The world market for semiconductors in AC-DC & DC-DC merchant power supplies. (2014)Google Scholar
  4. 4.
    Darnell Group: Worldwide DC-DC converter modules and ICs forecasts; application, amperage, wattage, isolation, input voltages, output voltages and converters IC trends, 11th edition (2011)Google Scholar
  5. 5.
    Ferrera, M.B., Litran, S.P., Duran, E., Andujar, J.M.: A converter for bipolar dc link based on SEPIC-Cuk combination. IEEE Trans. Power Electron. 30(12), 6483–6487 (2015)CrossRefGoogle Scholar
  6. 6.
    Ferrera, M.B., Litran, S.P., Duran, E., Andujar, J.M.: A SEPIC-Cuk converter combination for bipolar dc microgrid applications. In: Proceedings of the IEEE International Conference on Industrial Technology (2015)Google Scholar
  7. 7.
    Nami, A., Zare, F., Ghosh, A, Blaabjerg, F.: Multi-output DC-DC converters based on diode- clamped converts configuration: topology and control strategy. IET Power Electron. 3(2), 197–208 (2010)Google Scholar
  8. 8.
    Dietrich, S., Strache, S., Wunderlich, R., Heinen, S.: Get the LED out: experimental validation of a capacitors-free single-inductor, multiple-output LED driver topology. IEEE Ind. Electron. Mag. 9(2), 24–35 (2015)CrossRefGoogle Scholar
  9. 9.
    Ma, D., Ki, W.H., Tsui, C.Y., Mok, P.K.: Single inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode. IEEE J. Solid State Circuits 38(1), 89–100 (2003)CrossRefGoogle Scholar
  10. 10.
    Huang, M.H., Chen, K.H.: Single-inductor multi-output (SIMO) DC-DC converter with highlighted-load efficiency and minimized cross regulation for portable devices. IEEE J. Solid-State Circuits 44(4), 1099–1111 (2009)CrossRefGoogle Scholar
  11. 11.
    Kwon, D., Rincon-Mora, G.A.: Single-inductor-multiple-output switching DC-DC converters. IEEE Trans. Circuits Syst. II Exp. Briefs 56(8), 614–618 (2009)CrossRefGoogle Scholar
  12. 12.
    Wai, R.J., Jheng, K.H.: High-efficiency single-input multiple-output DC-DC converter. IEEE Trans. Power Electron. 28(2), 886–898 (2013)CrossRefGoogle Scholar
  13. 13.
    Qian, Z., Abdel-Rahman, O., Al-Atrash, H., Bataresh, I.: Modeling and control of three-port DC/DC converter interface for satellite applications. IEEE Trans. Power Electron. 25(3), 637–649 (2010)CrossRefGoogle Scholar
  14. 14.
    Behjati, H., Davoudi, A.: A Multiple-input multiple output DC-DC converter. IEEE Trans. Ind. Appl. 49(3), 1464–1479 (2013)CrossRefGoogle Scholar
  15. 15.
    Tong, Y., Shan, Z., Jatskevich, J., Davoudi, A.: A non-isolated multiple-input multiple-output DC-DC converter for DC distribution of future energy efficient homes. In: Proceedings of IEEE 40th Annual Conference on Industrial Electronics Society (2014)Google Scholar
  16. 16.
    Mahajan, S.B., Sreeramula Reddy, N., Pavan Kumar, R.K.: A novel single phase advanced multilevel inverter with adjustable amplitude of voltage levels. In: IEEE International Conference on Circuit, Power and Computing Technologies (IEEE-ICCPCT), Nagarcoil (2014)Google Scholar
  17. 17.
    Mahajan, S.B., Kiran, P., Revathi, B: A novel single phase multilevel inverter with single photovoltaic source and less number of switches. In: IEEE International Conference on Devices, Circuits and Systems (IEEE-ICDCS), Coimbatore (2014)Google Scholar
  18. 18.
    Khaligh, A., Cao, J., Lee, Y.J.: A multiple-input DC-DC converter topology. IEEE Trans. Power Electron. 24(3), 862–868 (2009)CrossRefGoogle Scholar
  19. 19.
    Li, Y., Ruan, X., Yang, D., Liu, F., Tse, C.K.: Synthesis of multiple-input DC/DC converters. IEEE Trans. Power Electron. 25, 2372–2385 (2010)CrossRefGoogle Scholar
  20. 20.
    Wu, H., Xu, P., Hu, H., Zhou, Z., Xing, Y.: Multiport converters based on integration of full bridge and bidirectional DC-DC topologies for renewable generation systems. IEEE Trans. Ind. Electron. 61(2), 856–859 (2014)CrossRefGoogle Scholar
  21. 21.
    Kim, H.-S., Jung, J.-H., J.-W. B, Kim, H.-J.: Analysis and design of a multioutput converter using asymmetrical PWM half-bridge flyback converter employing a parallel-series transformer. IEEE Trans. Ind. Electron. 60(8), 3115–3125 (2013)Google Scholar
  22. 22.
    Mullett, C., Cathell, F.: Improving the regulation of multi output flyback converters. In: Proceedings of IEEE APEC, pp. 1923–1926. Washington, USA (2009)Google Scholar
  23. 23.
    Jabbari, M., Farzanehfard, H.: Family of soft-switching resonant DC-DC converters. IET Power Electron. 2(2), 113–124 (2009)CrossRefGoogle Scholar
  24. 24.
    Boora, A.A., Zare, F., Ledwich, G., Ghosh, A.: A new DC-DC converter with multi output: topology and control strategies. EPEPEMC (2008)Google Scholar
  25. 25.
    Mahajan, S.B., Sreeramula Reddy, N., Pavan Kumar, R.K.: A novel non isolated switched inductor floating output DC-DC multilevel boost converter for fuelcell applications. In: IEEE Students’ Conference on Electrical, Electronics and Computer Sciences (IEEE-SCEECS), Bhopal (2014)Google Scholar
  26. 26.
    Mahajan S.B., Rishi, K., Anita, K., Pooja, C.: Non isolated switched inductor SEPIC converter topologies for photovoltaic boost applications. In: IEEE International Conference on Circuit, Power and Computing Technologies (IEEE-ICCPCT), Nagarcoil (2016)Google Scholar
  27. 27.
    Mahajan, S.B., Rishi, K., Sanjeevikumar, P., Siano, P., Blaabjerg, F.: Hybrid non-isolated and non inverting Nx interleaved DC-DC multilevel boost converter for renewable energy applications. In: The 16th IEEE International Conference on Environment and Electrical Engineering, (IEEE-EEEIC’16), Florence, Italy (2016)Google Scholar
  28. 28.
    Mahajan, S.B., Rishi, K., Sanjeevikumar, P., Blaabjerg, F., Viliam, F., Mihai, C.: Non isolated and non-inverting cockcroft walton multiplier based hybrid 2Nx interleaved boost converter for renewable energy applications. In: IEEE Conference on 17th the Power Electronics and Motion Control, (IEEE-PEMC’16), Europe (2016)Google Scholar
  29. 29.
    Sanjeevikumar, P., Kabalci, E., Iqbal, A., Abu-Rub, H., Ojo, O.: Control strategy and hardware implementation for DC-DC boost power conversion based on proportional-integral compensator for high voltage application. Engg. Sci. Tech. Intl. J. (JESTECH). Elsevier J. 18(2), 163–170 25 (2014)Google Scholar
  30. 30.
    Sanjeevikumar, P., Iqbal, A., Abu-Rub, H.: Implementation and control of extra high voltage DC-DC boost converter. In: The 7th IET International Conference on Sustainable Energy and Intelligent System, IET-SEISCON ‘14, Chennai (India) (2013)Google Scholar
  31. 31.
    Mahajan, S.B., Sanjeevikumar, P., Ojo, O., Rivera, M., Kulkarani, R.: Non-isolated and inverting Nx multilevel boost converter for photovoltaic DC link applications. IEEE ICA/ACCA, Chile (2016)Google Scholar
  32. 32.
    Mahajan, S.B., Sanjeevikumar, P., Blaabjerg, F., Ojo, O., Seshagiri, S., Kulkarni, R.: Inverting Nx and 2Nx non-isolated multilevel boost converter for renewable energy applications. 4th IET, CEAT, Kuala Lumpur, Malaysia (2016)Google Scholar
  33. 33.
    Mahajan, S.B., Sanjeevikumar, P., Wheeler, P., Blaabjerg, F., Rivera, M., Kulkarni, R.: XY converter family: a new breed of buck boost converter for high step-up renewable energy applications. In: IEEE-ICA/ACCA, Chile (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Padmanaban Sanjeevikumar
    • 1
    • 2
    Email author
  • Mahajan Sagar Bhaskar
    • 3
  • Pranav Dhond
    • 3
  • Frede Blaabjerg
    • 4
  • Michael Pecht
    • 5
  1. 1.Department of Electrical and Electronics EngineeringUniversity of South AfricaAuckland ParkSouth Africa
  2. 2.Research and Development (R & D)Ohm TechnologiesChennaiIndia
  3. 3.Department of Electrical and Electronics (EE) EngineeeringMarathwada Institute of Technology (MIT)AurangabadIndia
  4. 4.Center for Reliable Power Electronics (CORPE), Department of Energy TechnologyAalborg UniversityAalborgDenmark
  5. 5.Center for Advanced Life Cycle Engineering (CALCE)University of MarylandCollege ParkUSA

Personalised recommendations