Characterization of Fibronectin Assembly by Adherent Platelets Under Flow Conditions: Effect of Shear Stress and Role of β3 Integrins

  • Khon Huynh
  • Phong Le
  • Thao Nguyen
  • Hiep Nguyen
  • Volker Stoldt
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 63)

Abstract

Platelet thrombi at site of vascular injury require resistance to shear stress generated by the flowing blood. Fibronectin assembly can contribute to platelet adhesion and aggregation. Here, we examined the effect of shear stress and the role of αIIbβ3 and αvβ3 in fibronectin assembly by adherent platelets under flow dynamic conditions in vitro. Platelets were placed onto immobilized fibronectin (50 µg/ml) with fluorescently labeled fibronectin. Shear rates (500 s−1 or 5000 s−1) were generated by a viscometer (Diamed) for 2 or 10 min. Adherent platelets were lysed with 2% deoxycholate buffer. Insoluble fibronectin fibrils were isolated by centrifugation for quantification by measuring fluorescence intensity. In some experiments, abciximab (anti-β3) or LM609 (anti-αvβ3) antibody, were added before experiments. When shear rates increased from 500 to 5000 s−1, the amount of insoluble fibronectin detectable on platelets increased significantly (p < 0.05). However, prolongation of the exposure time to shear did not cause a significant difference in fibronectin assembly. No fibronectin fibrils were detectable on adherent platelets under static conditions. After 2 min at 5000 s−1, platelets blocked with abciximab showed a significant decrease in fibril formation in comparison to control experiments (no antibody). A similar inhibitory effect was achieved with LM609. When platelets were exposed to 5000 s−1 for 10 min, abciximab showed a higher inhibition on fibronectin assembly than LM609. We document that fibronectin assembly by adherent platelets is strongly affected by flow conditions. αvβ3 provides a significant contribution in initial phase, while αIIbβ3 probably exerts its effect in the later phase of fibronectin assembly under high shear conditions.

Keywords

Fibronectin assembly Platelet thrombi Shear stress αIIbβ3 Αvβ3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the NRW Research School BioStruct, by grants from the Ministry of Innovation, Science, Research and Technology of the German Federal State North Rhine-Westphalia (NRW) and from the ‘Gründerstiftung zur Förderung von Forschung und wissenschaftlichen Nachwuchs an der Heinrich-Heine-Universität Düsseldorf’. Moreover, some equipments of this work have been supported by grant No. 1161/QĐ-ĐHQG-KHCN of Vietnam National Universities-HCM City.

References

  1. 1.
    Ruggeri ZM, Mendolicchio GL (2007) Adhesion mechanisms in platelet function. Circ Res 100:1673–1685CrossRefGoogle Scholar
  2. 2.
    Ruggeri ZM (2009) Platelet adhesion under flow. Microcirculation 16:58–83CrossRefGoogle Scholar
  3. 3.
    Nievelstein PF, D’Alessio PA, Sixma JJ (1988) Fibronectin in platelet adhesion to human collagen types I and III. Use of nonfibrillar and fibrillar collagen in flowing blood studies. Arteriosclerosis 8:200–206Google Scholar
  4. 4.
    Cho J, Mosher DF (2006) Enhancement of thrombogenesis by plasma fibronectin cross-linked to fibrin and assembled in platelet thrombi. Blood 107:3555–3563CrossRefGoogle Scholar
  5. 5.
    Matuskova J, Chauhan AK, Cambien B, Astrof S, Dole VS, Piffath CL et al (2006) Decreased plasma fibronectin leads to delayed thrombus growth in injured arterioles. Arterioscler Thromb Vasc Biol 26:1391–1396CrossRefGoogle Scholar
  6. 6.
    Ni H, Denis CV, Subbarao S, Degen JL, Sato TN, Hynes RO et al (2000) Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 106:385–392CrossRefGoogle Scholar
  7. 7.
    Zardi L, Cecconi C, Barbieri O, Carnemolla B, Picca M, Santi L (1979) Concentration of fibronectin in plasma of tumor-bearing mice and synthesis by Ehrlich ascites tumor cells. Cancer Res 39:3774–3779Google Scholar
  8. 8.
    Huynh KC, Stoldt VR, Gyenes M, El-Khattouti A, Scharf RE (2011) Fibronectin unfolding by platelets and its effect on platelet adhesion and aggregation. ASH Ann Meeting Abstr 118:2209Google Scholar
  9. 9.
    Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399CrossRefGoogle Scholar
  10. 10.
    Singh P, Carraher C, Schwarzbauer JE (2010) Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol 26:397–419CrossRefGoogle Scholar
  11. 11.
    Cho J, Degen JL, Coller BS, Mosher DF (2005) Fibrin but not adsorbed fibrinogen supports fibronectin assembly by spread platelets. Effects of the interaction of alphaIIb beta3 with the C terminus of the fibrinogen gamma-chain. J Biol Chem 280:35490–35498CrossRefGoogle Scholar
  12. 12.
    Morla A, Zhang Z, Ruoslahti E (1994) Superfibronectin is a functionally distinct form of fibronectin. Nature 367:193–196CrossRefGoogle Scholar
  13. 13.
    Polanowska-Grabowska R, Simon CG Jr, Gear AR (1999) Platelet adhesion to collagen type I, collagen type IV, von Willebrand factor, fibronectin, laminin and fibrinogen: rapid kinetics under shear. Thromb Haemost 81:118–123Google Scholar
  14. 14.
    Cho J, Mosher DF (2006) Role of fibronectin assembly in platelet thrombus formation. J Thromb Haemost 4:1461–1469CrossRefGoogle Scholar
  15. 15.
    Singh I, Themistou E, Porcar L, Neelamegham S (2009) Fluid shear induces conformation change in human blood protein von Willebrand factor in solution. Biophys J 96:2313–2320CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Khon Huynh
    • 1
    • 2
  • Phong Le
    • 1
  • Thao Nguyen
    • 1
  • Hiep Nguyen
    • 1
  • Volker Stoldt
    • 2
  1. 1.Biomedical Engineering DepartmentInternational University–Vietnam National UniversityThu Duc District, Ho Chi Minh CityVietnam
  2. 2.Department of Experimental and Clinical HemostasisHemotherapy, and Transfusion Medicine, Heinrich Heine University Medical CenterDüsseldorfGermany

Personalised recommendations