Photocatalytic Concrete

  • Baoguo HanEmail author
  • Liqing Zhang
  • Jinping Ou


Photocatalytic concrete has the capability to realize air depollution, self-cleaning, and self-disinfecting. It is fabricated by adding photocatalyst into conventional concrete, and the most appropriate photocatalyst to fabricate photocatalytic concrete is TiO2. The photocatalytic reaction can occur under the light when energy is higher than the photocatalyst band gap. The formed highly oxidizing hydroxyl radicals can react with contaminants and produce carbon dioxide, water, or other harmless substances. The decomposed pollutants can be taken away by wind or rain to achieve the function of air depollution and self-cleaning. The photocatalytic concrete has great potential in the field of degradation of pollutants, deodorization, sterilization, and energy conservation.


Concrete Photocatalysis TiO2 Air purification Self-cleaning Self-disinfecting 


  1. 1.
    M.M. Ballari, M. Hunger, G. Hüsken, H. Brouwers, NOX photocatalytic degradation employing concrete pavement containing titanium dioxide. Appl. Catal. B 95(3), 245–254 (2010)CrossRefGoogle Scholar
  2. 2.
    M.M. Hassan, H. Dylla, L.N. Mohammad, T. Rupnow, Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Constr. Build. Mater. 24(8), 1456–1461 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Shen, M. Burton, B. Jobson, L. Haselbach, Pervious concrete with titanium dioxide as a photocatalyst compound for a greener urban road environment. Constr. Build. Mater. 35, 874–883 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Chen, C. Poon, Photocatalytic construction and building materials: from fundamentals to applications. Build. Environ. 44(9), 1899–1906 (2009)CrossRefGoogle Scholar
  5. 5.
    W.S. Oh, C. Xu, D.Y. Kim, D.W. Goodman, Preparation and characterization of epitaxial titanium oxide films on Mo (100). J. Vac. Sci. Technol. A Vac. Surf. Films 15(3), 1710–1716 (1997)CrossRefGoogle Scholar
  6. 6.
    A. Fujishima, X. Zhang, Titanium dioxide photocatalysis: present situation and future approaches. C. R. Chim. 9(5), 750–760 (2006)CrossRefGoogle Scholar
  7. 7.
    W.S. Tung, W.A. Daoud, Self-cleaning fibers via nanotechnology: a virtual reality. J. Mater. Chem. 21(22), 7858–7869 (2011)CrossRefGoogle Scholar
  8. 8.
    K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269–8285 (2005)CrossRefGoogle Scholar
  9. 9.
    L. Cassar, C. Pepe, G. Tognon, G.L. Guerrini, R. Amadelli., in 11th International Congress on the Chemistry of Cement. White cement for architectural concrete, possessing photocatalytic properties (2003), pp. 2012–2021Google Scholar
  10. 10.
    Y. Ohko, K. Hashimoto, A. Fujishima, Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. Physical. Chemistry 101(43), 8057–8062 (1997)Google Scholar
  11. 11.
    Y. Ohko, D.A. Tryk, K. Hashimoto, A. Fujishima, Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination. J. Phys. Chem. B 102(15), 2699–2704 (1998)CrossRefGoogle Scholar
  12. 12.
    Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J. Photochem. Photobiol. A 106(1), 51–56 (1997)CrossRefGoogle Scholar
  13. 13.
    K. Sunada, T. Watanabe, K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film. J. Photochem. Photobiol. A 156(1), 227–233 (2003)CrossRefGoogle Scholar
  14. 14.
    R. Wang, N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, Studies of surface wettability conversion on TiO2 single-crystal surfaces. J. Phys. Chem. B 103(12), 2188–2194 (1999)CrossRefGoogle Scholar
  15. 15.
    R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997)CrossRefGoogle Scholar
  16. 16.
    N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. J. Phys. Chem. B 107(4), 1028–1035 (2003)CrossRefGoogle Scholar
  17. 17.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995)CrossRefGoogle Scholar
  18. 18.
    A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1(1), 1–21 (2000)CrossRefGoogle Scholar
  19. 19.
    M. Hunger, H. Brouwers, M.D.L.M. Ballari, in 1st International Conference on Microstructure related Durability of Cementitious Composites. Photocatalytic degradation ability of cementitious materials: a modeling approach (2008), pp. 1103–1112Google Scholar
  20. 20.
    M. Hunger, G. Hüsken, H. Brouwers, Photocatalytic degradation of air pollutants—from modeling to large scale application. Cem. Concr. Res. 40(2), 313–320 (2010)CrossRefGoogle Scholar
  21. 21.
    C.S. Poon, E. Cheung, NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Constr. Build. Mater. 21(8), 1746–1753 (2007)CrossRefGoogle Scholar
  22. 22.
    K. Demeestere, J. Dewulf, B. De Witte, A. Beeldens, H. Van Langenhove, Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Build. Environ. 43(4), 406–414 (2008)CrossRefGoogle Scholar
  23. 23.
    A. Beeldens, in Transport Research Arena Europe-TRA. An environmental friendly solution for air purification and self-cleaning effect: the application of TiO2 as photocatalyst in concrete (2006)Google Scholar
  24. 24.
    G.L. Guerrini, E. Peccati, in Newsletter, Book: International RILEM Symposium on Photocatalysis, Environment and Construction Materials, ed. by P. Baglioni, L. Cassar. Photocatalytic cementitious roads for depollution (RILEM Publications, France, 2007), pp. 179–186Google Scholar
  25. 25.
    L. Cassar, Photocatalysis of cementitious materials: clean buildings and clear air. MRS Bull. 29(5), 328–331 (2004)CrossRefGoogle Scholar
  26. 26.
    F. Vallee, B. Ruot, L. Bonafous, L. Guillot, N. Pimpinelli, L. Cassar L et-al., in RILEM International Symposium on Environment-conscious Materials and Systems for Sustainable Developments, ed. by N. Kashino, Y. Ohama. Cementitious materials for self-cleaning and depolluting facade surfaces (Japan, 2004), pp. 245–354Google Scholar
  27. 27.
    J. Chen, S. Kou, C. Poon, Photocatalytic cement-based materials: comparison of nitrogen oxides and toluene removal potentials and evaluation of self-cleaning performance. Build. Environ. 46(9), 1827–1833 (2011)CrossRefGoogle Scholar
  28. 28.
    Q. Li, Q. Liu, B. Peng, L. Chai, H. Liu, Self-cleaning performance of TiO2-coating cement materials prepared based on solidification/stabilization of electrolytic manganese residue. Constr. Build. Mater. 106, 236–242 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Guo, A. Maury-Ramirez, C.S. Poon, Self-cleaning ability of titanium dioxide clear paint coated architectural mortar and its potential in field application. J. Clean. Prod. 112, 3583–3588 (2016)CrossRefGoogle Scholar
  30. 30.
    N. Ganji, A. Allahverdi, F. Naeimpoor, M. Mahinroosta, Photocatalytic effect of nano-TiO2 loaded cement on dye decolorization and Escherichia coli inactivation under UV irradiation. Res. Chem. Intermed. 42(6), 5395–5412 (2016)CrossRefGoogle Scholar
  31. 31.
    C.A. Linkous, G.J. Carter, D.B. Locuson, A.J. Ouellette, D.K. Slattery, L.A. Smitha, Photocatalytic inhibition of algae growth using TiO2, WO3, and cocatalyst modifications. Environ. Sci. Technol. 34(22), 4754–4758 (2000)CrossRefGoogle Scholar
  32. 32.
    S. P.Blöß, L. Elfenthal, in International RILEM Symposium on Photocatalysis, Environment and Construction Materials, ed. by P. Baglioni, L. Cassar. Doped titanium dioxide as a photocatalyst for UV and visible light (RILEM Publications, France, 2007), pp. 31–38Google Scholar
  33. 33.
    E. Boonen, A. Beeldens, Recent photocatalytic applications for air purification in belgium. Coatings 4(3), 553–573 (2014)CrossRefGoogle Scholar
  34. 34.
    C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang, Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J. Phys. Chem. B 110(9), 4066–4072 (2006)CrossRefGoogle Scholar
  35. 35.
    J. He, A. Hoyano, A numerical simulation method for analyzing the thermal improvement effect of super-hydrophilic photocatalyst-coated building surfaces with water film on the urban/built environment. Energy Build. 40(6), 968–978 (2008)CrossRefGoogle Scholar
  36. 36.
    Y. Ohko, D.A. Tryk, K. Hashimoto, A. Fujishima, Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination. J. Phys. Chem. B 102(15), 2699–2704 (1998)CrossRefGoogle Scholar
  37. 37.
    T. Maggos, A. Plassais, J.G. Bartzis, C. Vasilakos, N. Moussiopoulos, L. Bonafous, Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environ. Monit. Assess. 136(1), 35–44 (2008)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Civil EngineeringDalian University of TechnologyDalianChina
  2. 2.School of Civil EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations