Skip to main content

Effects of Low Energy Light Ion (H) Implantations on Quaternary-Alloy-Capped InAs/GaAs Quantum Dot Infrared Photodetectors

  • Chapter
  • First Online:
Impact of Ion Implantation on Quantum Dot Heterostructures and Devices

Abstract

In Chap. 2, we showed that heavy ion (S) implantations actually degraded the material and structural quality of InAs/GaAs QD systems, while there was an improvement in material quality when implanted with light ions (H). We, therefore, decided to validate these results and study the effects of H ion implantation on In(Ga)As/GaAs QD devices. Our research of interest was intersubband detectors. To validate the impact of ion implantation over devices, quaternary alloy-capped InAs/GaAs QDIP devices were implanted with low energy light ions (H). Different steps to fabricate single-pixel devices are also discussed in this chapter. A suppression of dark current density was observed for the implanted devices. Moreover, we optimized the different properties of quaternary-alloy-capped multilayer InAs/GaAs QDs in Chap. 3. The use of growth engineering and implantation techniques introduced in this study made us expect better electrical characteristics from high-quality, well-formed dots.

Portions of this chapter is reprinted from A. Mandal et al., “Proposed mechanism to represent the suppression of dark current density by four orders with low energy light ion (H) implantation in quaternary alloy-capped InAs/GaAs quantum dot infrared photodetectors,” Materials Research Bulletin, Vol. 48, pp. 2886–2891, 2013, with permission from Elsevier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Razeghi, Technology of Quantum Devices (Springer, New York, USA, 2010)

    Book  Google Scholar 

  2. L. Fu, H. Tan, I. McKerracher, J. Wong-Leung, C. Jagadish, N. Vukmirović et al., Effects of rapid thermal annealing on device characteristics of InGaAs/GaAs quantum dot infrared photodetectors. J. Appl. Phys. 99, 114517 (2006)

    Article  Google Scholar 

  3. S. Xu, S. Chua, T. Mei, X. Wang, X. Zhang, G. Karunasiri et al., Characteristics of InGaAs quantum dot infrared photodetectors. Appl. Phys. Lett. 73, 3153–3155 (1998)

    Article  Google Scholar 

  4. H. Liu, Quantum dot infrared photodetector. Optoelectron. Rev. 11, 1–6 (2003)

    Google Scholar 

  5. P. Martyniuk, A. Rogalski, Quantum-dot infrared photodetectors: status and outlook. Progress Quantum Electron. 32, 89–120 (2008)

    Article  Google Scholar 

  6. S. Chakrabarti, X. Su, P. Bhattacharya, G. Ariyawansa, A.U. Perera, Characteristics of a multicolor InGaAs-GaAs quantum-dot infrared photodetector. IEEE Photonics Technol. Lett. 17, 178–180 (2005)

    Article  Google Scholar 

  7. S.M. Kim, J.S. Harris, Multicolor InGaAs quantum-dot infrared photodetectors. IEEE Photonics Technol. Lett. 16, 2538–2540 (2004)

    Article  Google Scholar 

  8. X. Jiang, S.S. Li, M.Z. Tidrow, Investigation of a multistack voltage-tunable four-color quantum-well infrared photodetector for mid-and long-wavelength infrared detection. IEEE J. Quantum Electron. 35, 1685–1692 (1999)

    Article  Google Scholar 

  9. K.W. Berryman, S.A. Lyon, M. Segev, Mid-infrared photoconductivity in InAs quantum dots. Appl. Phys. Lett. 70, 1861–1863 (1997)

    Article  Google Scholar 

  10. E.-T. Kim, A. Madhukar, Z. Ye, J.C. Campbell, High detectivity InAs quantum dot infrared photodetectors. Appl. Phys. Lett. 84, 3277–3279 (2004)

    Article  Google Scholar 

  11. J.W. Kim, J.E. Oh, S.C. Hong, C.H. Park, T.K. Yoo, Room temperature far infrared (8/spl sim/10 μm) photodetectors using self-assembled InAs quantum dots with high detectivity. IEEE Electron Device Lett. 21, 329–331 (2000)

    Article  Google Scholar 

  12. H. Drexler, D. Leonard, W. Hansen, J.P. Kotthaus, P.M. Petroff, Spectroscopy of quantum levels in charge—tunable InGaAs quantum dots. Phys. Rev. Lett. 73, 2252–2255 (1994)

    Article  Google Scholar 

  13. M. Fricke, A. Lorke, J.P. Kotthaus, G. Medeiros-Ribeiro, P.M. Petroff, Shell structure and electron-electron interaction in self-assembled InAs quantum dots. Europhys. Lett. 36, 197 (1996)

    Article  Google Scholar 

  14. D. Pan, E. Towe, S. Kennerly, Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors. Appl. Phys. Lett. 73, 1937–1939 (1998)

    Article  Google Scholar 

  15. J. Phillips, K. Kamath, P. Bhattacharya, Far-infrared photoconductivity in self-organized InAs quantum dots. Appl. Phys. Lett. 72, 2020–2021 (1998)

    Article  Google Scholar 

  16. A. Stiff-Roberts, S. Krishna, P. Bhattacharya, S.W. Kennerly, Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector. IEEE J. Quantum Electron. 37, 1412–1419 (2001)

    Article  Google Scholar 

  17. Z. Ye, J.C. Campbell, Z. Chen, E.-T. Kim, A. Madhukar, InAs quantum dot infrared photodetectors with InGaAs strain-relief cap layers. J. Appl. Phys. 92, 7462 (2002)

    Article  Google Scholar 

  18. S.D. Gunapala, S.V. Bandara, C.J. Hill, D.Z. Ting, J.K. Liu, B. Rafol et al., 640 × 512 pixels long-wavelength infrared (LWIR) quantum-dot infrared photodetector (QDIP) imaging focal plane array. IEEE J. Quantum Electron. 43, 230–237 (2007)

    Article  Google Scholar 

  19. P. Bhattacharya, X. Su, S. Chakrabarti, G. Ariyawansa, A. Perera, Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature. Appl. Phys. Lett. 86, 191106–191106-3 (2005)

    Google Scholar 

  20. S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, A. Perera, High-performance, long-wave (~10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping. Appl. Phys. Lett. 99, 181102–181102-3 (2011)

    Google Scholar 

  21. A. Mandal, A. Agarwal, H. Ghadi, K.C. Goma Kumari, A. Basu et al., More than one order enhancement in peak detectivity (D*) for quantum dot infrared photodetectors implanted with low energy light ions (H). Appl. Phys. Lett. 102, 051105 (2013)

    Google Scholar 

  22. M. Sugawara, “Self-assembled InGaAs/GaAs Quantum Dots”, Semiconductors and Semimetals, vol. 60 (Academic Press, New York, USA, 1999)

    Google Scholar 

  23. J.F. Ziegler, J.P. Biersack, U. Littmark, PC Programme Package TRIM95 (1995)

    Google Scholar 

  24. A. Mandal, H. Ghadi, K.L. Mathur, A. Basu, N.B.V. Subrahmanyam, P. Singh, S. Chakrabarti, Proposed mechanism to represent the suppression of dark current density by four orders with low energy light ion (H) implantation in quaternary alloy-capped InAs/GaAs quantum dot infrared photodetectors. Mater. Res. Bull. 48, 2886–2891 (2013)

    Article  Google Scholar 

  25. V. Rideout, A review of the theory and technology for ohmic contacts to group III–V compound semiconductors. Solid-State Electron. 18, 541–550 (1975)

    Article  Google Scholar 

  26. A. Baca, F. Ren, J. Zolper, R. Briggs, S. Pearton, A survey of ohmic contacts to III–V compound semiconductors. Thin Solid Films 308, 599–606 (1997)

    Article  Google Scholar 

  27. J.-Y. Duboz, H. Liu, Z. Wasilewski, M. Byloss, R. Dudek, Tunnel current in quantum dot infrared photodetectors. J. Appl. Phys. 93, 1320–1322 (2003)

    Article  Google Scholar 

  28. S. Shah, N. Halder, S. Sengupta, S. Chakrabarti, Comparison of luminescence properties of bilayer and multilayer InAs/GaAs quantum dots. Mater. Res. Bull. 47, 130–134 (2012)

    Article  Google Scholar 

  29. A. Stiff-Roberts, X. Su, S. Chakrabarti, P. Bhattacharya, Contribution of field-assisted tunneling emission to dark current in InAs-GaAs quantum dot infrared photodetectors. IEEE Photonics Technol. Lett. 16, 867–869 (2004)

    Article  Google Scholar 

  30. J.C. Campbell, A. Madhukar, Quantum-dot infrared photodetectors. Proc. IEEE 95, 1815–1827 (2007)

    Article  Google Scholar 

  31. R. Sreekumar, A. Mandal, S. Chakrabarti, S. Gupta, Effect of heavy ion implantation on self-assembled single layer InAs/GaAs quantum dots. J. Phys. D: Appl. Phys. 43, 505302 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun Mandal .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mandal, A., Chakrabarti, S. (2017). Effects of Low Energy Light Ion (H) Implantations on Quaternary-Alloy-Capped InAs/GaAs Quantum Dot Infrared Photodetectors. In: Impact of Ion Implantation on Quantum Dot Heterostructures and Devices . Springer, Singapore. https://doi.org/10.1007/978-981-10-4334-5_4

Download citation

Publish with us

Policies and ethics