Skip to main content

Abstract

This chapter deals with the basics of zero-dimensional quantum structures, i.e. quantum dots. An abridged explanation of its electronic properties is mentioned in this chapter. Different fabrication techniques for growing quantum dots are also chalked out in short. The advantages and disadvantages of self-assembled quantum dots are described in detail. Various in-situ and ex-situ techniques along with importance of different capping layers for improving electronic properties of self-assembled quantum dots are also referred in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Asada, Y. Miyamoto, Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers. Quantum Electron., IEEE J. 22, 1915–1921 (1986)

    Article  Google Scholar 

  2. Paul Harrison, Quantum Wells, Wires and Dots—Theoretical and Computational Physics of Semiconductor Nanostructures (Wiley, Chichester, U.K., 2005)

    Book  Google Scholar 

  3. Mitsuru Sugawara, “Self-assembled InGaAs/GaAs Quantum Dots”, Semiconductors and Semimetals, vol. 60 (Academic Press, New York, USA, 1999)

    Google Scholar 

  4. B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, J.L. Reno, 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation. Appl. Phys. Lett. 82, 1015–1017 (2003)

    Article  Google Scholar 

  5. F. Jerome, F. Capasso, C. Sirtori, D. Sivco, A. Hutchinson, A. Cho, Quantum Cascade Laser. Science 264, 553–556 (1994)

    Article  Google Scholar 

  6. C.-F. Hsu, O. Jeong-Seok, P. Zory, D. Botez, Intersubband quantum-box semiconductor lasers. Sel. Topics Quantum Electron, IEEE J. 6, 491–503 (2000)

    Article  Google Scholar 

  7. U. Bockelmann, G. Bastard, Phonon scattering and energy relaxation in two, one, and zero-dimensional electron gases. Phys. Rev. B 42, 8947 (1990)

    Article  Google Scholar 

  8. H. Benisty, C. Sotomayor-Torres, C. Weisbuch, Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Phys. Rev. B 44, 10945 (1991)

    Article  Google Scholar 

  9. A. Mandal, A. Agarwal, H. Ghadi, Goma Kumari K.C., A. Basu et al., “More than one order enhancement in peak detectivity (D*) for quantum dot infrared photodetectors implanted with low energy light ions (H),” Applied Physics Letters, vol. 102, pp. 051105 (2013)

    Google Scholar 

  10. Jasprit Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, New York, USA, 2003)

    Book  Google Scholar 

  11. Shun Lien Chuang, Physics of Photonic Devices (Wiley, New Jersey, USA, 2009)

    Google Scholar 

  12. D.A.B. Miller, Quantum Mechanics for Scientists and Engineers (Cambridge University Press, New York, USA, 2008)

    Book  Google Scholar 

  13. Manijeh Razeghi, Technology of Quantum Devices (Springer, New York, USA, 2010)

    Book  Google Scholar 

  14. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, U.K., 1999)

    Google Scholar 

  15. Zhiming M. Wang, Self-assembled Quantum Dots (Springer, New York, USA, 2008)

    Book  Google Scholar 

  16. Hongtao Jiang, Jasprit Singh, Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study. Phys. Rev. B 56, 4696–4701 (1997)

    Article  Google Scholar 

  17. J. Tatebayashi, N. Nuntawong, P.-S. Wong, Y. Xin, L. Lester, D. Huffaker, Strain compensation technique in self-assembled InAs/GaAs quantum dots for applications to photonic devices. J. Phys. D Appl. Phys. 42, 073002 (2009)

    Article  Google Scholar 

  18. G. Solomon, J. Trezza, A. Marshall, J. Harris, JS, ‘Vertically aligned and electronically coupled growth induced InAs islands in GaAs”. Phys. Rev. Lett. 76, 952–955 (1996)

    Article  Google Scholar 

  19. Ameenah Al-Ahmadi, Quantum Dots—A Variety of New Applications (InTech, Croatia, 2012)

    Book  Google Scholar 

  20. J. Suseendran, N. Halder, S. Chakrabarti, T. Mishima, C. Stanley, Stacking of multilayer InAs quantum dots with combination capping of InAlGaAs and high temperature grown GaAs. Superlattices Microstruct. 46, 900–906 (2009)

    Article  Google Scholar 

  21. N. Halder, R. Rashmi, S. Chakrabarti, C.R. Stanley, M. Herrera, N.D. Browning, A comprehensive study of the effect of in situ annealing at high growth temperature on the morphological and optical properties of self assembled InAs/GaAs QDs. Appl. Phys. A: Mater. Sci. and Process. 95, 713–720 (2009)

    Article  Google Scholar 

  22. S. Sengupta, N. Halder, S. Chakrabarti, Investigation of effect of varying growth pauses on the structural and optical properties of InAs/GaAs quantum dots heterostructure. Superlattices Microstruct. 46, 611–617 (2009)

    Article  Google Scholar 

  23. E.C. Le Ru, P.D. Siverns, R. Murray, Luminescence enhancement from hydrogen-passivated self-assembled quantum dots. Appl. Phys. Lett. 77, 2446–2448 (2000)

    Article  Google Scholar 

  24. G. Sasikala, I. Suemune, P. Thilakan, H. Kumano, K. Uesugi, Y. Nabetani, T. Matsumoto, H. Machida, “Structural and Luminescence Properties of InAs Quantum Dots: Effect of Nitrogen Exposure on Dot Surfaces,” Japanese J. Appl. Phys., vol. 44, pp. L 1512–L 1515 (2005)

    Google Scholar 

  25. S. Chakrabarti, S. Fathpour, K. Moazzami, J. Phillips, Y. Lei, N. Browning et al., Pulsed laser annealing of self-organized InAs/GaAs quantum dots. J. Electron. Mater. 33, L5–L8 (2004)

    Article  Google Scholar 

  26. S. Adhikary, S. Chakrabarti, A detailed investigation on the impact of post-growth annealing on the materials and device characteristics of 35-layer In0.50Ga0.50As/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping. Mater. Res. Bull. 47, 3317–3322 (2012)

    Article  Google Scholar 

  27. R. Leon, G. Swift, B. Magness, W. Taylor, Y. Tang, K. Wang et al., Changes in luminescence emission induced by proton irradiation: InGaAs/GaAs quantum wells and quantum dots. Appl. Phys. Lett. 76, 2074–2076 (2000)

    Article  Google Scholar 

  28. R. Leon, S. Marcinkecius, J. Siegert, B. Cechavicius, B. Magness, W. Taylor et al., Effects of proton irradiation on luminescence emission and carrier dynamics of self-assembled III-V quantum dots. Nucl. Sci., IEEE Trans. 49, 2844–2851 (2002)

    Article  Google Scholar 

  29. W. Lu, Y. Ji, G. Chen, N. Tang, X. Chen, S. Shen et al., Enhancement of room-temperature photoluminescence in InAs quantum dots. Appl. Phys. Lett. 83, 4300–4302 (2003)

    Article  Google Scholar 

  30. Y. Ji, G. Chen, N. Tang, Q. Wang, X. Wang, J. Shao et al., Proton-implantation-induced photoluminescence enhancement in self-assembled InAs/GaAs quantum dots. Appl. Phys. Lett. 82, 2802–2804 (2003)

    Article  Google Scholar 

  31. P. Bhattacharya, Z. Mi, Quantum-dot optoelectronic devices. Proc. IEEE 95, 1723–1740 (2007)

    Article  Google Scholar 

  32. Christian Gilfert, Johann Peter P. Reithmaier, “Semiconductor Lasers for Sensor Applications,” Nanotechnological Basis for Advanced Sensors, NATO Science for Peace and Security Series B: Physics and Biophysics, pp. 333–353, (2011)

    Google Scholar 

  33. H.B. Wu, S.J. Xu, J. Wang, Impact of the cap layer on the electronic structure and optical properties of self-assembled InAs/GaAs quantum dots. Phys. Rev. B 74, 205329 (2006)

    Article  Google Scholar 

  34. P. Hazdra, J. Oswald, V. Komarnitskyy, K. Kuldová, A. Hospodková, E. Hulicius, J. Pangrác, Influence of capping layer thickness on electronic states in self assembled MOVPE grown InAs quantum dots in GaAs. Superlattices Microstruct. 46, 324–327 (2009)

    Article  Google Scholar 

  35. V.D. Dasika, J.D. Song, W.J. Choi, N.K. Cho, J.I. Lee, R.S. Goldman, Influence of alloy buffer and capping layers on InAs/GaAs quantum dot formation. Appl. Phys. Lett. 95, 163114 (2009)

    Article  Google Scholar 

  36. J.S. Kim, J.H. Lee, S.U. Hong, W.S. Han, H.-S. Kwack, C.W. Lee, D.K. Oh, Manipulation of the structural and optical properties of InAs quantum dots by using various InGaAs structures. J. Appl. Phys. 94, 6603–6606 (2003)

    Article  Google Scholar 

  37. V. Haxha, I. Drouzas, J.M. Ulloa, M. Bozkurt, P.M. Koenraad, D.J. Mowbray, H.Y. Liu, M.J. Steer, M. Hopkinson, M.A. Migliorato, Role of segregation in InAs/GaAs quantum dot structures capped with GaAsSb strain-reduction layer. Phys. Rev. B 80, 165331 (2009)

    Article  Google Scholar 

  38. J.M. Ulloa, W.D.I. Drouzas, P.M. Koenraad, D.J. Mowbray, M.J. Steer, H.Y. Liu, M. Hopkinson, Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer. Appl. Phys. Lett. 90, 213105 (2007)

    Article  Google Scholar 

  39. S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, and A. Perera, “High-performance, long-wave (~ 10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping,” Appl. Phys. Lett., vol. 99, pp. 181102–181102-3, (2011)

    Google Scholar 

  40. S. Adhikary, N. Halder, S. Chakrabarti, S. Majumdar, S. Ray, M. Herrera et al., Investigation of strain in self-assembled multilayer InAs/GaAs quantum dot heterostructures. J. Cryst. Growth 312, 724–729 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun Mandal .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mandal, A., Chakrabarti, S. (2017). Introduction to Quantum Dots. In: Impact of Ion Implantation on Quantum Dot Heterostructures and Devices . Springer, Singapore. https://doi.org/10.1007/978-981-10-4334-5_1

Download citation

Publish with us

Policies and ethics