Skip to main content

An LDA-Based Sensor Selection Approach

  • Chapter
  • First Online:
  • 745 Accesses

Abstract

In the application of breath analysis , the redundant specificities of a sensor array often exceed the needs of the discrimination application. When recognizing types of diseases, not all sensors are required. However, it is difficult to decide which sensor is more useful for an unknown sample because some sensors are cross-sensitive to the biomarkers of the diseases. In this chapter, we propose a linear discriminant analysis (LDA)-based sensor selection technique (LDASS) which chooses an optimal configuration of sensors for a particular application from a whole set of available sensors. The proposed method finds the direction \(\varvec{w}\) via the LDA such that when data are projected onto this direction, the samples from two classes are as separate as possible. It is found that after projection, the difference of means of the two distinct sample classes can be expressed as the linear combination of the responses of all the sensors in the system, and \(\varvec{w}\) can be regarded as the weight vectors for these sensors which indicate the contribution weight of each sensor. Accordingly, it is possible to determine which sensor has a greater contribution in classifying the two classes. A series of experiments on different databases show that the proposed method outperforms other sensor selection techniques, such as the sequential forward selection (SFS) and genetic algorithm (GA) in recognition accuracy and processing time. This technique is not only applicable for breath analysis, but also useful in the general applications of e-noses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alpaydin E (2004) Introduction to machine learning. The MIT Press

    Google Scholar 

  • Amann A, Schmid A, Scholl-Burgi S, Telser S, Hinterhuber H (2005) Breath analysis for medical diagnosis and therapeutic monitoring. Spectrosc Eur 17(3):18–20

    Google Scholar 

  • Baraldi E, Carraro S (2006) Exhaled NO and breath condensate. Paediatr Respir Rev 7:20–22

    Article  Google Scholar 

  • Brighenti F, Benini L, Del Rio D, Casiraghi C, Pellegrini N, Scazzina F, Jenkins D, Vantini I (2006) Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am J Clin Nutr 83(4):817–822

    Google Scholar 

  • D’Amico A, Di Natale C, Paolesse R, Macagnano A, Martinelli E, Pennazza G, Santonico M, Bernabei M, Roscioni C, Galluccio G, et al (2007) Olfactory systems for medical applications. Sens Actuators B Chem 130(1):458–465

    Google Scholar 

  • D’Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, Di Natale C (2010) An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 68(2):170–176

    Article  Google Scholar 

  • Davies S, Spanel P, Smith D (1997) Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int 52(1):223–228

    Article  Google Scholar 

  • Deng C, Zhang J, Yu X, Zhang W, Zhang X (2004) Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J Chromatogr B 810(2):269–275

    Article  Google Scholar 

  • Di Francesco F, Fuoco R, Trivella M, Ceccarini A (2005) Breath analysis: trends in techniques and clinical applications. Microchem J 79(1–2):405–410

    Article  Google Scholar 

  • Di Natale C, Macagnano A, Martinelli E, Paolesse R, D’Arcangelo G, Roscioni C, Finazzi-Agrò A, D’Amico A (2003) Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron 18(10):1209–1218

    Article  Google Scholar 

  • Dragonieri S, Schot R, Mertens B, Le Cessie S, Gauw S, Spanevello A, Resta O, Willard N, Vink T, Rabe K et al (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120(4):856–862

    Article  Google Scholar 

  • Dragonieri S, Annema J, Schot R, van der Schee M, Spanevello A, Carratú P, Resta O, Rabe K, Sterk P (2009) An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2):166–170

    Article  Google Scholar 

  • Dweik R, Amann A (2008) Exhaled breath analysis: the new frontier in medical testing. J Breath Res 2(030):301

    Google Scholar 

  • Gardner J, Boilot P, Hines E (2005) Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approach. Sens Actuators B Chem 106(1):114–121

    Article  Google Scholar 

  • Gualdron O, Brezmes J, Llobet E, Amari A, Vilanova X, Bouchikhi B, Correig X (2007) Variable selection for support vector machine based multisensor systems. Sensors Actuators B Chem 122(1):259–268

    Article  Google Scholar 

  • Guo D, Zhang D, Li N, Zhang L, Yang J (2010) A novel breath analysis system based on electronic olfaction. IEEE Trans Biomed Eng 57(11):2753–2763

    Article  Google Scholar 

  • Horvath I, Loukides S, Wodehouse T, Kharitonov S, Cole P, Barnes P (1998) Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. Br Med J 53(10):867–870

    Google Scholar 

  • Hu Q, Pedrycz W, Yu D, Lang J (2009) Selecting discrete and continuous features based on neighborhood decision error minimization. IEEE Trans Syst Man Cybern Part B Cybern 40(1):137–150

    Google Scholar 

  • Kermani B, Schiffman S, Nagle H (1998) A novel method for reducing the dimensionality in a sensor array. IEEE Trans Instrum Meas 47(3):728–741

    Article  Google Scholar 

  • Kharitonov S, Wells A, O’connor B, Cole P, Hansell D, Logan-Sinclair R, Barnes P, (1995) Elevated levels of exhaled nitric oxide in bronchiectasis. Am J Respir Crit Care Med 151(6):1889–1893

    Google Scholar 

  • Le Marchand L, Wilkens L, Harwood P, Cooney R (2006) Breath hydrogen and methane in populations at different risk for colon cancer. Int J Cancer 55(6):887–890

    Article  Google Scholar 

  • Maziak W, Loukides S, Culpitt S, Sullivan P, Kharitonov S, Barnes P (1998) Exhaled nitric oxide in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157(3):998–1002

    Article  Google Scholar 

  • Miekisch W, Schubert J, Noeldge-Schomburg G (2004) Diagnostic potential of breath analysis-focus on volatile organic compounds. Clin Chimi Acta 347(1–2):25–39

    Article  Google Scholar 

  • Narasimhan L, Goodman W, Patel C (2001) Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc Nat Acad Sci 98(8):4617–4621

    Article  Google Scholar 

  • Pardo A, Marco S, Calaza C, Ortega A, Perera A, Sundic T, Samitier J (2001) Methods for sensors selection in pattern recognition. In: Proceedings of the seventh international symposium on olfaction and electronic noses. Taylor & Francis, pp 83–88

    Google Scholar 

  • Phaisangittisagula E, Nagle H, Areekul V (2010) Intelligent method for sensor subset selection for machine olfaction. Sens Actuators B Chem 145(1):507–515

    Article  Google Scholar 

  • Phillips M, Cataneo R, Cummin A, Gagliardi A, Gleeson K, Greenberg J, Maxfield R, Rom W (2003a) Detection of Lung Cancer With Volatile Markers in the Breath. Chest 123(6):2115–2123

    Article  Google Scholar 

  • Phillips M, Cataneo R, Ditkoff B, Fisher P, Greenberg J, Gunawardena R, Kwon C, Rahbari-Oskoui F, Wong C (2003b) Volatile markers of breast cancer in the breath. Breast J 9(3):184–191

    Article  Google Scholar 

  • Phillips M, Cataneo R, Condos R, Ring Erickson G, Greenberg J, La Bombardi V, Munawar M, Tietje O (2007) Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis 87(1):44–52

    Article  Google Scholar 

  • Schubert J, Miekisch W, Geiger K, Nöldge-Schomburg G (2004) Breath analysis in critically ill patients: potential and limitations. Expert Rev Mol Diagn 4(5):619–629

    Article  Google Scholar 

  • Sehnert S, Jiang L, Burdick J, Risby T (2002) Breath biomarkers for detection of human liver diseases: preliminary study. Biomarkers 7(2):174–187

    Article  Google Scholar 

  • Shih C, Lin Y, Lee K, Chien P, Drake P (2010) Real time electronic nose based pathogen detection for respiratory intensive care patients. Chemical, Sensors and Actuators B

    Google Scholar 

  • Subrahmanya N, Shin Y (2010) Sparse multiple kernel learning for signal processing applications. IEEE Trans Pattern Anal Mach Intell 32(5):788–798

    Article  Google Scholar 

  • Van Berkel J, Dallinga J, Möller G, Godschalk R, Moonen E, Wouters E, Van Schooten F (2008) Development of accurate classification method based on the analysis of volatile organic compounds from human exhaled air. J Chromatogr B 861(1):101–107

    Article  Google Scholar 

  • Xu Y, Yang J, Jin Z (2004a) A novel method for Fisher discriminant analysis. Pattern Recogn 37(2):381–384

    Article  MATH  Google Scholar 

  • Xu Y, Yang J, Yang J (2004b) A reformative kernel Fisher discriminant analysis. Pattern Recogn 37(6):1299–1302

    Article  MATH  Google Scholar 

  • Yu J, Byun H, So M, Huh J (2005) Analysis of diabetic patient’s breath with conducting polymer sensor array. Sens Actuators B Chem 108(1–2):305–308

    Article  Google Scholar 

  • Zhang S, Xie C, Zeng D, Li H, Liu Y, Cai S (2009) A sensor array optimization method for electronic noses with sub-arrays. Sens Actuators B Chem 142(1):243–252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, D., Guo, D., Yan, K. (2017). An LDA-Based Sensor Selection Approach. In: Breath Analysis for Medical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4322-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4322-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4321-5

  • Online ISBN: 978-981-10-4322-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics