Skip to main content

Development of Therapeutic dsP21-322 for Cancer Treatment

  • Chapter
  • First Online:
RNA Activation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 983))

Abstract

Small activating RNAs (saRNAs) are a class of artificially designed short duplex RNAs targeted at the promoter of a particular gene to upregulate its expression via a mechanism known as RNA activation (RNAa) and hold great promise for treating a wide variety of diseases including those undruggable by conventional therapies. The therapeutic benefits of saRNAs have been demonstrated in a number of preclinical studies carried out in different disease models including cancer. With many tumor suppressor genes (TSGs) downregulated due to either epigenetic mechanisms or haploinsufficiency resulting from deletion/mutation, cancer is an ideal disease space for saRNA therapeutics which can restore the expression of TSGs via epigenetic reprogramming. The p21WAF1/CIP gene is a TSG frequently downregulated in cancer and an saRNA for p21WAF1/CIP known as dsP21-322 has been identified to be a sequence-specific p21WAF1/CIP activator in a number of cancer types. In this chapter, we review preclinical development of medicinal dsP21-322 for cancer, especially prostate cancer and bladder cancer, and highlight its potential for further clinical development.

Moo Rim Kang and Gongcheng Li contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400–414. doi:nrc2657 [pii] 10.1038/nrc2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Narayanannair Jayaprakash K, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev KG, Sah DW, Soutschek J, Toudjarska I, Vornlocher HP, Zimmermann TS, Langer R, Anderson DG (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26(5):561–569. doi:10.1038/nbt1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akinc A, Goldberg M, Qin J, Dorkin JR, Gamba-Vitalo C, Maier M, Jayaprakash KN, Jayaraman M, Rajeev KG, Manoharan M, Koteliansky V, Rohl I, Leshchiner ES, Langer R, Anderson DG (2009) Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther 17(5):872–879. doi:10.1038/mt.2009.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, Jayaraman M, Rajeev KG, Cantley WL, Dorkin JR, Butler JS, Qin L, Racie T, Sprague A, Fava E, Zeigerer A, Hope MJ, Zerial M, Sah DW, Fitzgerald K, Tracy MA, Manoharan M, Koteliansky V, Fougerolles A, Maier MA (2010) Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 18(7):1357–1364. doi:10.1038/mt.2010.85

    Article  CAS  PubMed Central  Google Scholar 

  5. Chen Z, Place RF, Jia ZJ, Pookot D, Dahiya R, Li LC (2008) Antitumor effect of dsRNA-induced p21(WAF1/CIP1) gene activation in human bladder cancer cells. Mol Cancer Ther 7(3):698–703. doi:10.1158/1535-7163.MCT-07-2312

    Article  CAS  PubMed  Google Scholar 

  6. Clasen S, Schulz WA, Gerharz CD, Grimm MO, Christoph F, Schmitz-Drager BJ (1998) Frequent and heterogeneous expression of cyclin-dependent kinase inhibitor WAF1/p21 protein and mRNA in urothelial carcinoma. Br J Cancer 77(4):515–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, Perez J, Chiesa J, Warrington S, Tranter E, Munisamy M, Falzone R, Harrop J, Cehelsky J, Bettencourt BR, Geissler M, Butler JS, Sehgal A, Meyers RE, Chen Q, Borland T, Hutabarat RM, Clausen VA, Alvarez R, Fitzgerald K, Gamba-Vitalo C, Nochur SV, Vaishnaw AK, Sah DW, Gollob JA, Suhr OB (2013) Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 369(9):819–829. doi:10.1056/NEJMoa1208760

    Article  CAS  PubMed  Google Scholar 

  8. De Paula D, Bentley MV, Mahato RI (2007) Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA 13(4):431–456. doi:10.1261/rna.459807

    Article  PubMed  PubMed Central  Google Scholar 

  9. el-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y et al (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54(5):1169–1174

    CAS  PubMed  Google Scholar 

  10. Dong Z, Dang Y, Chen Y (2014) Small double-stranded RNA mediates the anticancer effects of p21WAF1/ClP1 transcriptional activation in a human glioma cell line. Yonsei Med J 55(2):324–330. doi:10.3349/ymj.2014.55.2.324201403324 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eastham JA, Hall SJ, Sehgal I, Wang J, Timme TL, Yang G, Connell-Crowley L, Elledge SJ, Zhang WW, Harper JW et al (1995) In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Res 55(22):5151–5155

    CAS  PubMed  Google Scholar 

  12. Falsini S, Ciani L, Ristori S, Fortunato A, Arcangeli A (2014) Advances in lipid-based platforms for RNAi therapeutics. J Med Chem 57(4):1138–1146. doi:10.1021/jm400791q

    Article  CAS  PubMed  Google Scholar 

  13. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75(4):805–816

    Article  CAS  PubMed  Google Scholar 

  14. Hu J, Chen Z, Xia D, Wu J, Xu H, Ye ZQ (2012) Promoter-associated small double-stranded RNA interacts with heterogeneous nuclear ribonucleoprotein A2/B1 to induce transcriptional activation. Biochem J 447(3):407–416. doi:10.1042/BJ20120256BJ20120256 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Huang V, Qin Y, Wang J, Wang X, Place RF, Lin G, Lue TF, Li LC (2010) RNAa is conserved in mammalian cells. PLoS One 5(1):e8848. doi:10.1371/journal.pone.0008848

    Article  PubMed  PubMed Central  Google Scholar 

  16. Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR (2007) Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 3(3):166–173. doi:nchembio860 [pii] 10.1038/nchembio860

    Article  CAS  PubMed  Google Scholar 

  17. Kang MR, Yang G, Place RF, Charisse K, Epstein-Barash H, Manoharan M, Li LC (2012) Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth. Cancer Res 72(19):5069–5079. 0008-5472.CAN-12-1871 [pii] 10.1158/0008-5472.CAN-12-1871

    Article  CAS  PubMed  Google Scholar 

  18. Kosaka M, Kang MR, Yang G, Li LC (2012) Targeted p21WAF1/CIP1 activation by RNAa inhibits hepatocellular carcinoma cells. Nucleic Acid Ther 22(5):335–343. doi:10.1089/nat.2012.0354

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 103(46):17337–17342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li C, Jiang W, Hu Q, Li LC, Dong L, Chen R, Zhang Y, Tang Y, Thrasher JB, Liu CB, Li B (2016) Enhancing DPYSL3 gene expression via a promoter-targeted small activating RNA approach suppresses cancer cell motility and metastasis. Oncotarget 7(16):22893–22910. doi:10.18632/oncotarget.82908290 [pii]

    PubMed  PubMed Central  Google Scholar 

  21. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105(5):1608–1613. doi:0707594105 [pii] 10.1073/pnas.0707594105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Place RF, Noonan EJ, Foldes-Papp Z, Li LC (2010) Defining features and exploring chemical modifications to manipulate RNAa activity. Curr Pharm Biotechnol 11(5):518–526. doi:BSP/CPB/E-Pub/0094-11-6aaa [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Place RF, Wang J, Noonan EJ, Meyers R, Manoharan M, Charisse K, Duncan R, Huang V, Wang X, Li L-C (2012) Formulation of small activating RNA into lipidoid nanoparticles inhibits xenograft prostate tumor growth by inducing p21 expression. Mol Ther Nucleic Acids 1:e15. doi:10.1038/mtna.2012.5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Portnoy V, Lin SH, Li KH, Burlingame A, Hu ZH, Li H, Li LC (2016) saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res 26(3):320–335. doi:10.1038/cr.2016.22cr201622 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, Sah DW, Stebbing D, Crosley EJ, Yaworski E, Hafez IM, Dorkin JR, Qin J, Lam K, Rajeev KG, Wong KF, Jeffs LB, Nechev L, Eisenhardt ML, Jayaraman M, Kazem M, Maier MA, Srinivasulu M, Weinstein MJ, Chen Q, Alvarez R, Barros SA, De S, Klimuk SK, Borland T, Kosovrasti V, Cantley WL, Tam YK, Manoharan M, Ciufolini MA, Tracy MA, de Fougerolles A, MacLachlan I, Cullis PR, Madden TD, Hope MJ (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28(2):172–176. doi:10.1038/nbt.1602nbt.1602 [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Shen Z, Shen T, Wientjes MG, O’Donnell MA, Au JL (2008) Intravesical treatments of bladder cancer: review. Pharm Res 25(7):1500–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Slaton JW, Benedict WF, Dinney CP (2001) P53 in bladder cancer: mechanism of action, prognostic value, and target for therapy. Urology 57(5):852–859

    Article  CAS  PubMed  Google Scholar 

  28. Spruck CH 3rd, Ohneseit PF, Gonzalez-Zulueta M, Esrig D, Miyao N, Tsai YC, Lerner SP, Schmutte C, Yang AS, Cote R et al (1994) Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res 54(3):784–788

    CAS  PubMed  Google Scholar 

  29. Stein JP, Ginsberg DA, Grossfeld GD, Chatterjee SJ, Esrig D, Dickinson MG, Groshen S, Taylor CR, Jones PA, Skinner DG, Cote RJ (1998) Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer. J Natl Cancer Inst 90(14):1072–1079

    Article  CAS  PubMed  Google Scholar 

  30. Tam YY, Chen S, Cullis PR (2013) Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics 5(3):498–507. doi:10.3390/pharmaceutics5030498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Teraishi F, Kadowaki Y, Tango Y, Kawashima T, Umeoka T, Kagawa S, Tanaka N, Fujiwara T (2003) Ectopic p21sdi1 gene transfer induces retinoic acid receptor beta expression and sensitizes human cancer cells to retinoid treatment. Int J Cancer 103(6):833–839

    Article  CAS  PubMed  Google Scholar 

  32. Vaishnaw AK, Gollob J, Gamba-Vitalo C, Hutabarat R, Sah D, Meyers R, de Fougerolles T, Maraganore J (2010) A status report on RNAi therapeutics. Silence 1(1):14. doi:1758-907X-1-14 [pii] 10.1186/1758-907X-1-14

    Article  PubMed  PubMed Central  Google Scholar 

  33. Voutila J, Saetrom P, Mintz P, Sun G, Alluin J, Rossi JJ, Habib NA, Kasahara N (2012) Gene expression profile changes after short-activating RNA-mediated induction of endogenous pluripotency factors in human mesenchymal stem cells. Mol Ther Nucleic Acids 1:e35. doi:10.1038/mtna.2012.20mtna201220 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  34. Waga S, Hannon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369(6481):574–578

    Article  CAS  PubMed  Google Scholar 

  35. Warfel NA, El-Deiry WS (2013) p21WAF1 and tumorigenesis: 20 years after. Curr Opin Oncol 25(1):52–58. doi:10.1097/CCO.0b013e32835b639e

    Article  CAS  PubMed  Google Scholar 

  36. Watts JK, Yu D, Charisse K, Montaillier C, Potier P, Manoharan M, Corey DR (2010) Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to noncoding transcripts at gene promoters. Nucleic Acids Res 38:5242–5259. doi:gkq258 [pii] 10.1093/nar/gkq258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei J, Zhao J, Long M, Han Y, Wang X, Lin F, Ren J, He T, Zhang H (2010) p21WAF1/CIP1 gene transcriptional activation exerts cell growth inhibition and enhances chemosensitivity to cisplatin in lung carcinoma cell. BMC Cancer 10:632. doi:1471-2407-10-632 [pii] 10.1186/1471-2407-10-632

  38. Whitson JM, Noonan EJ, Pookot D, Place RF, Dahiya R (2009) Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma. Int J Cancer 125(2):446–452. doi:10.1002/ijc.24370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu M, Bellas RE, Shen J, Sonenshein GE (1998) Roles of the tumor suppressor p53 and the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in receptor-mediated apoptosis of WEHI 231 B lymphoma cells. J Exp Med 187(10):1671–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu ZM, Dai C, Huang Y, Zheng CF, Dong QZ, Wang G, Li XW, Zhang XF, Li B, Chen G (2011) Anti-cancer effects of p21WAF1/CIP1 transcriptional activation induced by dsRNAs in human hepatocellular carcinoma cell lines. Acta Pharmacol Sin 32(7):939–946. doi:aps201128 [pii] 10.1038/aps.2011.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang K, Zheng XY, Qin J, Wang YB, Bai Y, Mao QQ, Wan Q, Wu ZM, Xie LP (2008) Up-regulation of p21(WAF1/Cip1) by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells. Cancer Lett 265(2):206–214

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Cheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kang, M.R., Li, G., Pan, T., Xing, JC., Li, LC. (2017). Development of Therapeutic dsP21-322 for Cancer Treatment. In: Li, LC. (eds) RNA Activation. Advances in Experimental Medicine and Biology, vol 983. Springer, Singapore. https://doi.org/10.1007/978-981-10-4310-9_16

Download citation

Publish with us

Policies and ethics