Skip to main content

The Effects of Exercise on Cardiovascular Biomarkers: New Insights, Recent Data, and Applications

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 999)

Abstract

The benefit of regular exercise or physical activity with appropriate intensity on improving cardiopulmonary function and endurance has long been accepted with less controversy. The challenge remains, however, quantitatively evaluate the effect of exercise on cardiovascular health due in part to the amount and intensity of exercise varies widely plus lack of effective, robust and efficient biomarker evaluation systems. Better evaluating the overall function of biomarker and validate biomarkers utility in cardiovascular health should improve the evidence regarding the benefit or the effect of exercise or physical activity on cardiovascular health, in turn increasing the efficiency of the biomarker on individuals with mild to moderate cardiovascular risk. In this review, beyond traditional cytokines, chemokines and inflammatory factors, we systemic reviewed the latest novel biomarkers in metabolomics, genomics, proteomics, and molecular imaging mainly focus on heart health, as well as cardiovascular diseases such as atherosclerosis and ischemic heart disease. Furthermore, we highlight the state-of-the-art biomarker developing techniques and its application in the field of heart health. Finally, we discuss the clinical relevance of physical activity and exercise on key biomarkers in molecular basis and practical considerations.

Keywords

  • Exercise
  • Cardiovascular disease
  • Heart health
  • Biomarkers

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-4307-9_3
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-4307-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 3.1

References

  1. Tang WH, Francis GS, Morrow DA et al (2008) National Academy of Clinical Biochemistry Laboratory medicine practice guidelines: clinical utilization of cardiac biomarker testing in heart failure. Clin Biochem 41(4–5):210–221

    CAS  CrossRef  PubMed  Google Scholar 

  2. Antman EM, Morrow DA (2008) Biomarker release after percutaneous coronary intervention: a message from the heart. Circ Cardiovasc Interv 1(1):3–6

    CrossRef  PubMed  Google Scholar 

  3. Beauchaine TP, Thayer JF (2015) Heart rate variability as a transdiagnostic biomarker of psychopathology. Int J Psychophysiol 98(2 Pt 2):338–350

    CrossRef  PubMed  Google Scholar 

  4. Berezin AE, Kremzer AA, Martovitskaya YV et al (2015) The utility of biomarker risk prediction score in patients with chronic heart failure. Clin Hypertens 22(1):3

    CrossRef  PubMed  Google Scholar 

  5. Stajer V, Trivic T, Drid P et al (2016) A single session of exhaustive exercise markedly decreases circulating levels of guanidinoacetic acid in healthy men and women. Appl Physiol Nutr Metab:1–4

    Google Scholar 

  6. Wu J, Gao Y (2015) Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteomics 12(6):623–636

    CAS  CrossRef  PubMed  Google Scholar 

  7. Albitar M, Ma W, Lund L et al (2016) Predicting prostate biopsy results using a panel of plasma and urine biomarkers combined in a scoring system. J Cancer 7(3):297–303

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Chyu MC, Zhang Y, Brismee JM et al (2013) Effects of martial arts exercise on body composition, serum biomarkers and quality of life in overweight/obese premenopausal women: a pilot study. Clin Med Insights Womens Health 6:55–65

    PubMed  PubMed Central  Google Scholar 

  9. Horvath AR, Kis E, Dobos E (2010) Guidelines for the use of biomarkers: principles, processes and practical considerations. Scand J Clin Lab Invest Suppl 242:109–116

    CrossRef  PubMed  Google Scholar 

  10. Ozdemir V, Williams-Jones B, Cooper DM et al (2007) Mapping translational research in personalized therapeutics: from molecular markers to health policy. Pharmacogenomics 8(2):177–185

    CAS  CrossRef  PubMed  Google Scholar 

  11. Bozkurt S, Kaya EB, Okutucu S et al (2011) The diagnostic and prognostic value of first hour glycogen phosphorylase isoenzyme BB level in acute coronary syndrome. Cardiol J 18(5):496–502

    CrossRef  PubMed  Google Scholar 

  12. Palacios G, Pedrero-Chamizo R, Palacios N et al (2015) Biomarkers of physical activity and exercise. Nutr Hosp 31(Suppl 3):237–244

    PubMed  Google Scholar 

  13. Cooper DM, Leu SY, Galassetti P et al (2014) Dynamic interactions of gas exchange, body mass, and progressive exercise in children. Med Sci Sports Exerc 46(5):877–886

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Karavirta L, Costa MD, Goldberger AL et al (2013) Heart rate dynamics after combined strength and endurance training in middle-aged women: heterogeneity of responses. PLoS One 8(8):e72664

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Serrano-Ostariz E, Terreros-Blanco JL, Legaz-Arrese A et al (2011) The impact of exercise duration and intensity on the release of cardiac biomarkers. Scand J Med Sci Sports 21(2):244–249

    CAS  CrossRef  PubMed  Google Scholar 

  16. Ahmad T, Wang T, O’Brien EC et al (2015) Effects of left ventricular assist device support on biomarkers of cardiovascular stress, fibrosis, fluid homeostasis, inflammation, and renal injury. JACC Heart Fail 3(1):30–39

    CrossRef  PubMed  Google Scholar 

  17. Ahmad T, Fiuzat M, Neely B et al (2014) Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure. JACC Heart Fail 2(3):260–268

    CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Font-Ribera L, Kogevinas M, Schmalz C et al (2016) Environmental and personal determinants of the uptake of disinfection by-products during swimming. Environ Res 149:206–215

    CAS  CrossRef  PubMed  Google Scholar 

  19. McCullagh B, Girgis RE (2010) Exercise as an end-point in pulmonary hypertension trials. Int J Clin Pract Suppl 165:4–6

    CrossRef  Google Scholar 

  20. Mlakar P, Salobir B, Cobo N et al (2014) The effect of short-term cardiac rehabilitation after acute myocardial infarction on high-sensitivity C-reactive protein. Metab Syndr Relat Disord 12(2):149–155

    CAS  CrossRef  PubMed  Google Scholar 

  21. Perk J, Gohlke H, Hellemans I et al (2007) Cardiovascular prevention and rehabilitation. Springer, London, pp 234–235

    CrossRef  Google Scholar 

  22. Beavers KM, Hsu FC, Isom S et al (2010) Long-term physical activity and inflammatory biomarkers in older adults. Med Sci Sports Exerc 42(12):2189–2196

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Lund AJ, Hurst TL, Tyrrell RM et al (2011) Markers of chronic inflammation with short-term changes in physical activity. Med Sci Sports Exerc 43(4):578–583

    CAS  CrossRef  PubMed  Google Scholar 

  24. Connes P, Yalcin O, Baskurt O et al (2006) In health and in a normoxic environment, VO2 max is/is not limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100(6):2099

    CrossRef  PubMed  Google Scholar 

  25. Ahmad T, Fiuzat M, Mark DB, et al (2014) The effects of exercise on cardiovascular biomarkers in patients with chronic heart failure. Am heart J 167 (2):193-202.e1

    Google Scholar 

  26. Liao YH, Sung YC, Chou CC et al (2016) Eight-week training cessation suppresses physiological stress but rapidly impairs health metabolic profiles and aerobic capacity in elite taekwondo athletes. PLoS One 11(7):e0160167

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Ghafourian M, Ashtary-Larky D, Chinipardaz R et al (2016) Inflammatory Biomarkers’ response to two different intensities of a single bout exercise among soccer players. Iran Red Crescent Med J 18(2):e21498

    PubMed  PubMed Central  Google Scholar 

  28. Li DJ, Fu H, Zhao T et al (2016) Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle. Metabolism 65(5):747–756

    CAS  CrossRef  PubMed  Google Scholar 

  29. Dalal M, Sun K, Cappola AR et al (2011) Relationship of serum fibroblast growth factor 23 with cardiovascular disease in older community-dwelling women. Eur J Endocrinol 165(5):797–803

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Plischke M, Neuhold S, Adlbrecht C et al (2012) Inorganic phosphate and FGF-23 predict outcome in stable systolic heart failure. Eur J Clin Investig 42(6):649–656

    CAS  CrossRef  Google Scholar 

  31. Ford ML, Smith ER, Tomlinson LA et al (2012) FGF-23 and osteoprotegerin are independently associated with myocardial damage in chronic kidney disease stages 3 and 4. Another link between chronic kidney disease-mineral bone disorder and the heart. Nephrol Dial Transplant 27(2):727–733

    CAS  CrossRef  PubMed  Google Scholar 

  32. Berndt TJ, Schiavi S, Kumar R (2005) “Phosphatonins” and the regulation of phosphorus homeostasis. Am J Physiol Renal Physiol 289(6):F1170–F1182

    CAS  CrossRef  PubMed  Google Scholar 

  33. Berndt T, Kumar R (2009) Novel mechanisms in the regulation of phosphorus homeostasis. Physiology (Bethesda) 24:17–25

    CAS  CrossRef  Google Scholar 

  34. Clarke BL (2011) FGF23 regulation of phosphorus homeostasis is dependent on PTH. Endocrinology 152(11):4016–4018

    CAS  CrossRef  PubMed  Google Scholar 

  35. Martin A, Liu S, David V et al (2011) Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J 25(8):2551–2562

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Qi Z, Liu W, Lu J (2016) The mechanisms underlying the beneficial effects of exercise on bone remodeling: roles of bone-derived cytokines and microRNAs. Prog Biophys Mol Biol 122(2):131–139

    CAS  CrossRef  PubMed  Google Scholar 

  37. Cuevas-Ramos D, Aguilar-Salinas CA (2016) Modulation of energy balance by fibroblast growth factor 21. Horm Mol Biol Clin Investig. doi:10.1515/hmbci-2016-0023

  38. Gunes V, Atalan G, Citil M et al (2008) Use of cardiac troponin kits for the qualitative determination of myocardial cell damage due to traumatic reticuloperitonitis in cattle. Vet Rec 162(16):514–517

    CAS  CrossRef  PubMed  Google Scholar 

  39. Panteghini M, Bonora R, Pagani F et al (1997) Rapid, highly sensitive immunoassay for determination of cardiac troponin I in patients with myocardial cell damage. Clin Chem 43(8 Pt 1):1464–1465

    CAS  PubMed  Google Scholar 

  40. Rottbauer W, Greten T, Muller-Bardorff M, et al (1996) Troponin T: a diagnostic marker for myocardial infarction and minor cardiac cell damage. Eur heart J 17 Suppl F:3-8

    Google Scholar 

  41. Katus HA, Schoeppenthau M, Tanzeem A et al (1991) Non-invasive assessment of perioperative myocardial cell damage by circulating cardiac troponin T. Br Heart J 65(5):259–264

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Gresslien T, Agewall S (2016) Troponin and exercise. Int J Cardiol 221:609–621

    CAS  CrossRef  PubMed  Google Scholar 

  43. Stewart GM, Yamada A, Haseler LJ et al (2016) Influence of exercise intensity and duration on functional and biochemical perturbations in the human heart. J Physiol 594(11):3031–3044

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Olah A, Nemeth BT, Matyas C et al (2015) Cardiac effects of acute exhaustive exercise in a rat model. Int J Cardiol 182:258–266

    CrossRef  PubMed  Google Scholar 

  45. Li T, Zhu D, Zhou R et al (2012) HBOC attenuates intense exercise-induced cardiac dysfunction. Int J Sports Med 33(5):338–345

    CrossRef  PubMed  Google Scholar 

  46. Lee G, Twerenbold R, Tanglay Y et al (2016) Clinical benefit of high-sensitivity cardiac troponin I in the detection of exercise-induced myocardial ischemia. Am Heart J 173:8–17

    CAS  CrossRef  PubMed  Google Scholar 

  47. Tsoutsman T, Chung J, Doolan A et al (2006) Molecular insights from a novel cardiac troponin I mouse model of familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 41(4):623–632

    CAS  CrossRef  PubMed  Google Scholar 

  48. Romano S, di Mauro M, Fratini S et al (2011) Serial BNP assay in monitoring exercise tolerance in patients with diastolic dysfunction. Int J Cardiol 147(2):312–313

    CrossRef  PubMed  Google Scholar 

  49. Pascual-Figal DA, Penafiel P, Nicolas F et al (2008) Prognostic value of BNP and cardiopulmonary exercise testing in patients with systolic heart failure on beta-blocker therapy. Rev Esp Cardiol 61(3):260–268

    CrossRef  PubMed  Google Scholar 

  50. Ciampi Q, Borzillo G, Barbato E et al (2009) Diastolic function and BNP changes during exercise predict oxygen consumption in chronic heart failure patients. Scand Cardiovasc J 43(1):17–23

    CAS  CrossRef  PubMed  Google Scholar 

  51. Lindman BR (2014) BNP during exercise: a novel use for a familiar biomarker in aortic stenosis. Heart 100(20):1567–1568

    CrossRef  PubMed  Google Scholar 

  52. Aengevaeren VL, Hopman MT, Thijssen DH et al (2017) Endurance exercise-induced changes in BNP concentrations in cardiovascular patients versus healthy controls. Int J Cardiol 227:430–435

    CrossRef  PubMed  Google Scholar 

  53. Smart NA, Steele M (2010) Systematic review of the effect of aerobic and resistance exercise training on systemic brain natriuretic peptide (BNP) and N-terminal BNP expression in heart failure patients. Int J Cardiol 140(3):260–265

    CAS  CrossRef  PubMed  Google Scholar 

  54. Montoye HJ, Mikkelsen WH, Willis PW 3rd et al (1975) Serum uric acid, body fatness, and heart rate response to exercise. Med Sci Sports 7(3):233–236

    CAS  PubMed  Google Scholar 

  55. Sanchis-Gomar F, Salvagno GL, Lippi G (2014) Inhibition of xanthine oxidase and exercise on serum uric acid, 25(OH)D3, and calcium concentrations. Clin Lab 60(8):1409–1411

    CAS  PubMed  Google Scholar 

  56. Green HJ, Fraser IG (1988) Differential effects of exercise intensity on serum uric acid concentration. Med Sci Sports Exerc 20(1):55–59

    CAS  CrossRef  PubMed  Google Scholar 

  57. Lamina S, Okoye G (2012) Effects of aerobic exercise training on psychosocial status and serum uric acid in men with essential hypertension: a randomized controlled trial. Ann Med Health Sci Res 2(2):161–168

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Vaughan JM (1975) The physiology of bone, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  59. Ito M (1989) CT evaluation of trabecular and cortical bone mineral density of the lumbar spine in patients on hemodialysis. Nippon Igaku Hoshasen Gakkai Zasshi 49(11):1382–1389

    CAS  PubMed  Google Scholar 

  60. Wasnich RD, Ross PD, Davis JW (1991) Osteoporosis current practice and future perspectives. Trends Endocrinol Metab 2(2):59–62

    CAS  CrossRef  PubMed  Google Scholar 

  61. Weir-McCall JR, Kamalasanan A, Cassidy DB et al (2016) Assessment of proximal pulmonary arterial stiffness using magnetic resonance imaging: effects of technique, age and exercise. BMJ Open Respir Res 3(1):e000149

    CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Sasaki M, Kawase S, Miyazaki Y et al (2012) The examination of attenuation correction using one computed tomography scan in myocardial perfusion stress-rest single photon emission computed tomography. Nihon Hoshasen Gijutsu Gakkai Zasshi 68(8):997–1005

    CrossRef  PubMed  Google Scholar 

  63. Mahnken AH, Klotz E, Pietsch H et al (2010) Quantitative whole heart stress perfusion CT imaging as noninvasive assessment of hemodynamics in coronary artery stenosis: preliminary animal experience. Investig Radiol 45(6):298–305

    Google Scholar 

  64. Kelly RE Jr, Mellins RB, Shamberger RC et al (2013) Multicenter study of pectus excavatum, final report: complications, static/exercise pulmonary function, and anatomic outcomes. J Am Coll Surg 217(6):1080–1089

    CrossRef  PubMed  Google Scholar 

  65. Pelliccia A, Adami PE, Quattrini F et al (2017) Are Olympic athletes free from cardiovascular diseases? Systematic investigation in 2352 participants from Athens 2004 to Sochi 2014. Br J Sports Med 51(4):238–243

    CrossRef  PubMed  Google Scholar 

  66. Leder BZ, Araujo AB, Travison TG et al (2007) Racial and ethnic differences in bone turnover markers in men. J Clin Endocrinol Metab 92(9):3453–3457

    CAS  CrossRef  PubMed  Google Scholar 

  67. Feldstein A, Elmer PJ, Orwoll E et al (2003) Bone mineral density measurement and treatment for osteoporosis in older individuals with fractures: a gap in evidence-based practice guideline implementation. Arch Intern Med 163(18):2165–2172

    CrossRef  PubMed  Google Scholar 

  68. Finkelstein JS, Sowers M, Greendale GA et al (2002) Ethnic variation in bone turnover in pre- and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab 87(7):3051–3056

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Che .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Che, L., Li, D. (2017). The Effects of Exercise on Cardiovascular Biomarkers: New Insights, Recent Data, and Applications. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-10-4307-9_3

Download citation